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Electronic Data Repositories

• Technological leaps in information processing, storage, and 
communications has led to the creation of vast electronic data 
repositories.
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By simply clicking on a blue button icon, 
users will be able to download their 
medical (Medicare/Medicaid) data
to their personal computers. – (PubMed Central)



The Privacy Problem

• Explosive growth in electronic information sources that are publicly 
accessible
– Google, Facebook, open governance, DMV records, etc.

• These electronic information sources can also leak private 
information!
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Utility vs. Privacy
• Utility (benefit) of data repositories is in allowing legitimate users 

access to statistical/processed data.
– e.g., census data

• However, individual information needs to be kept private
– Private information (e.g., SSN, DoB, credit card) can be potentially 

inferred from revealed data. 

• Private information is application-specific
– DoB is private for medical but not DMV databases.
– Census publications may not reveal name, SSN, DoB, address, tel. no. 

of any individual.

• Need a framework that precisely quantifies the utility-privacy 
tradeoffs for any application.
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Talk Outline

• Database privacy problem

• Smart grid privacy problems

• Summary and future work
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Talk Outline

• Database Privacy Problem
– Source and Perturbation Model
– Utility and Privacy Metrics
– Examples
– Related Results
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The Massachusetts Example

• Is it sufficient to hide personal information? [Sweeney, ’02]
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The Massachusetts Example

• Unique identification via correlation from two public databases
[Sweeney, ’02]
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More Examples

• The Netflix competition [2006] to improve movie recommendations 
• Public training data set with movie preferences of 480,000 customers 
• Data was “de-identified” – stripped of specific personal details 

• V. Shmatikov and A. Narayanan [ISSP, ‘08]
• Compared film preferences of some anonymous customers with 

personal profiles on imdb.com, 
• Re-identification using distinguishing information

• Netflix claimed 
• “Anonymity of the study data is comparable to the strictest Federal 

standards for anonymizing personal health information.”
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A. Narayanan and V. Shmatikov, “Robust de-anonymization of large sparse datasets,” in 
Proc. IEEE Intl. Symp. Security and Privacy, Oakland, CA, May 2008, pp. 111–125.



More Examples… Medical Data

• New York Times reports
– Sale of clinical data is a huge and growing business. 
– De-identified information is “repackaged” and resold.
– New regulations do NOT forbid sale of de-identified data.

• The opportunities for leakage are growing 
– Query logs, genetics, …

• De-identification is NOT sufficient for safe disclosure of 
medical data!
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The Privacy Problem is Pervasive

• Sources leak information in unforeseeable ways
– Intra-source leaks: hidden correlations between public and personal 

information, e.g., electronic health systems, census (e.g. outliers)
– inter-source leaks: correlation between sources [Sweeney, Shmatikov]

• But the electronic sources cannot be shut down
– Tremendous utility provided.
– Cannot shut down Google or Facebook!

• Can we disclose (utility) while guaranteeing privacy?
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Privacy vs. Secrecy!
• Privacy: the ability to prevent unwanted transfer of information (via 

inference or correlation) when legitimate transfers happen.

• But privacy is not secrecy!

• Secrecy Problem: Protocols and primitives clearly distinguish a 
malicious adversary vs intended user and secret vs non-secret data.
– Encryption may be a solution.
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Privacy is not Secrecy!
• Privacy: the ability to prevent unwanted transfer of information (via 

inference or correlation) when legitimate transfers happen.

• But privacy is not secrecy!

• Privacy problem: disclosing data provides informational utility while 
also enabling potential loss of privacy
– Every user is potentially an adversary
– Encryption is not a solution! 
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What is Utility?
• Data sources exist to be used but utility of a data source can be 

degraded by privacy requirements.

• “Perfect privacy can be achieved by publishing nothing at all, but this 
has no utility; perfect utility can be obtained by publishing the data 
exactly as received, but this offers no privacy” [Dwork ‘06]

• Thus, maximum utility of a data source is achieved at minimum 
privacy and vice versa.

• What is the utility-privacy tradeoff for a data source?
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Existing Approaches

• Privacy problem lies at the intersection of multiple communities.

– Application-specific approaches without universal guarantees 
• CS Theory: differential privacy – cryptography motivated definition 

– How to guarantee non-identification
– Privacy paramount 

• Utility vs. privacy tradeoff remains unsolved.
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Privacy Problem: A New Insight

• Any data source has public and private attributes

5/6/2011 H. V. Poor     Privacy and Utility 17

Ethnicity

Visit Date

Diagnosis

Procedure

Medication

Total Charge

Name

Address

SSN

Ethnicity

Visit Date

Diagnosis

Procedure

Medication

Total Charge

MA Public Health Care
Database

Zip Code

Gender

Birth Date
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Privacy Problem: A New Insight

• Any data source has public and private attributes
• Want to reveal public attributes maximally without revealing the 

private attributes
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Privacy Problem: A New Insight

• But… private and public attributes are correlated.

• Controlling privacy leakage amounts to controlling the correlation.

• Correlation can be controlled via perturbation of public attributes.

• Best U-P tradeoff: finding the minimal perturbation that achieves a 
desired correlation.

• Our contribution: a framework based on rate-distortion theory with 
universal metrics for utility and privacy.
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L. Sankar, S. R. Rajagopalan, and H. V. Poor. “Utility and privacy of data sources: Can 
Shannon help conceal and reveal information?,” ITA Workshop, La Jolla, CA, Feb. 2010.



The Database Privacy Problem

• A database is a table – rows: individual entries (total of ); columns: 
attributes for each individual (total of )
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Database: Source Model
• A real database d is (typically) a table with >>1 rows (entries) and 

 columns (attributes)
Our model: 
• Database  with  rows is a sequence of  i.i.d. observations of a 

vector random variable  = (1 2 … K) with the distribution

• Attributes divided into Kr public (revealed) and Kh private (hidden) 
variables, typically not disjoint
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L. Sankar, S. R. Rajagopalan, and H. V. Poor. “A theory of utility and privacy of data 
sources,” Proc. of IEEE Intl. Symp. Inform. Theory, Austin, TX, Jun. 13-18 2010.



Database: Utility vs. Privacy

• The Utility-Privacy Problem:
– How to reveal the public variables while hiding the private variables 

given that the two sets are correlated?
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Database: Utility vs. Privacy

• The Utility-Privacy Problem: Rate distortion theory with privacy is a 
natural fit!
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Database: Utility vs. Privacy

• The Utility-Privacy Problem: Rate distortion theory with privacy is a 
natural fit!

• Encoder maps  () to a “sanitized” database (SDB) 

• : number of revealed (“quantized”) databases
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L. Sankar, S. R. Rajagopalan, and H. V. Poor. “A theory of utility and privacy of data 
sources,” Proc. of IEEE Intl. Symp. Inform. Theory, Austin, TX, Jun. 13-18 2010.



Database: Utility vs. Privacy

• The Utility-Privacy Problem: Rate distortion theory with privacy is a 
natural fit!

• Encoder maps  () to a “sanitized” database (SDB) 

• : number of revealed (“quantized”) databases

• Decoder: Uses  to obtain a “reconstructed” database (for query 
processing)
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Utility Metric

• Map utility to fidelity 
– Utility is a measure of closeness of  and  .
– Fidelity is affected by added noise, limited precision, suppression.

Encoding Constraint:
• Utility constraints  avg. distortion per entry (row)

–  : distance-based function (e.g.: Hamming, Euclidean, K-L)
– : upper bound on the avg. distortion per entry

• More generally, can bound distortion on all subsets of 
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Privacy Metric

• Map privacy to equivocation
– Privacy is a measure of ‘uncertainty’ about hidden data given revealed 

data.

Encoding Constraint:
• Privacy constraints   equivocation on average per entry (row)

– : lower bound on the avg. privacy per entry

• More generally, can bound equivocation on all subsets of 
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The Utility-Privacy Tradeoff
• Utility-privacy tradeoff region ( ) is

• How do we compute  ? 

• Consider the following source coding problem with privacy 
constraints ..…
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{( , ): ( , ) is feasible}    



A Source Coding Problem with Privacy

• A source (,) wishes to reveal  subject to a fidelity constraint 
while keeping  as private as possible.
– Revealing  will result in information leakage about 

• Problem first studied by Yamamoto [IT, ’83]
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secret from the receiver or wiretappers,” IEEE Trans. Inform. Theory, 29(6), Nov. 1983.



• Simplified version of the database privacy problem with…..
– one private and one public attribute

A Source Coding Problem with Privacy
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A Source Coding Problem with Privacy
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( )2    Rate constraint

• Simplified version of the database privacy problem with additional rate 
constraint
– Rate constraint bounds the number of “quantized” sequences
– For U-P tradeoff this seems superfluous 



Rate-Distortion-Equivocation (RDE)

• Yamamoto [IT, ’83] :

• () is the minimal compression rate for a distortion 
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Rate-Distortion-Equivocation (RDE)

• Yamamoto [IT, ’83] :
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Rate-Distortion-Equivocation (RDE)

• Yamamoto [IT, ’83] :
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Rate-Distortion-Equivocation (RDE)

• SRP [ISIT, ’10] :
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L. Sankar, S. R. Rajagopalan, and H. V. Poor. “A theory of utility and privacy of data 
sources,” Proc. of IEEE Intl. Symp. Inform. Theory, Austin, TX, Jun. 13-18 2010.



The Utility-Privacy Tradeoff
• Recall: utility-privacy tradeoff region  is

• Recall: - : feasible distortion-equivocation pairs

• Theorem [SRP, ISIT ‘10] :
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For a database with utility and privacy constraints,  = .

L. Sankar, S. Raj Rajagopalan, H. V. Poor, “A theory of privacy and utility in databases,” 
submitted to the IEEE Trans. Inform. Theory, Feb. 2011.



Utility-Privacy/RDE Regions

5/6/2011 H. V. Poor     Privacy and Utility 37

Distortion 

Equivocation 

( , )  

Feasible Distortion-Equivocation 
region . 

Privacy 

Utility 
Distortion 

Privacy-indifferent
Region

Privacy-exclusive
Region (current art)

Our Approach:
Utility-Privacy 
Tradeoff Region

Equivocation 

(a): Rate-Distortion-Equivocation Region (b): Utility-Privacy Tradeoff Region



Example 1: Categorical Database

• Categorical data: finite alphabet data with discrete distribution
– e.g.: SSN, zipcode, etc.

Original variable  Distorted variable

• The categorical database case has remained largely unaddressed in 
privacy research until now.
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L. Sankar, S. R. Rajagopalan, and H. V. Poor. “An information-theoretic approach to 
privacy,” Proc. 48th Allerton Conf. Comm., Cntl., and Comp., Monticello, IL, Sep, 2010.
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Example 1: Categorical Database

• Optimal input to output mapping: reverse ‘water-filling’

– Only  with () >  revealed ( : water-level). 
• Eliminates samples with low probabilities (relative to water-level )

– Equivalent to outlier aggregation/suppression (dominant statistical 
approaches)

– Such samples reveal the most information
• As  ,   (relative to distribution) to reveal fewer samples
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Example 2: Numerical Database

• Numerical data: finite/infinite alphabet real data 
– e.g.: results of medical tests, etc.
– Medical research often assumes Gaussian distributed data

• Sanitized DB remains Gaussian distributed.
• Gaussian     achieves minimal (,) and maximal privacy ()
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Example 2: Numerical Database
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Related Results
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Talk Outline

• Database privacy problems

• Smart grid privacy problems

• Summary and future work
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Smart Grid – Competitive Privacy
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• N.A. Grid: interconnected regional transmission organizations which:
– need to share measurements on state estimation for reliability (utility) 
– wish to withhold information for economic competitive reasons (privacy)

• Leads to a new problem of competitive privacy
– Our results: precise quantification of state leakage (privacy) vs. 

estimation error (utility) and optimal communication scheme
– New problem in source coding – distributed encoding/decoding

L. Sankar, S. Kar, R. Tandon, and H. V. Poor, “Competitive privacy in the smart grid: An 
information-theoretic approach,” submitted to IEEE SmartGridComm, Apr. 2011.



Smart Grid – Smart Meter Privacy

• Smart meter is a critical enabler of the Smart Grid
• For consumers: Tariff- and load-aware appliance usage 
• For electricity suppliers: Load balancing; data mining (analytics)

– Data mining: tremendous utility to supplier; huge consumer privacy risk
• Time-series data: utility-privacy tradeoff via rate-distortion for 

sources with memory

5/6/2011 L. Sankar     Privacy and Utility 45

S. Rajagopalan, L. Sankar, S. Mohajer, 
and H. V. Poor, “Smart meter privacy: 
Utility-privacy tradeoff,” submitted to 
IEEE SmartGridComm, Apr. 2011.



Talk Outline

• Database privacy problem

• Smart grid privacy problems

• Summary and Future Work
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Summary

• The privacy problem is immediate and here to stay … and multiply…

• One solution will not fit all applications… 

• But a framework provides the much needed abstraction

• More needs to be done…
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Trying to ward off regulators, the advertising industry has agreed on a standard icon — a little “i” —
that it will add to most online ads that use demographics and behavioral data to tell consumers what 
is happening. – NY Times, Jan. 26, 2010.



Future Work
Privacy in Social Networks:
• Quantifying privacy and utility in social networks

– Information leakage due to social graph
– How to quantify utility?

Practical Privacy via Signal Processing:
• Compressive sensing, quantization, clustering, …
• Universal lossy coding schemes

Medical Database Privacy:
• De-identification and privacy
• Does synthetic data suffice? 
• Need for re-identification?
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Multi-Disciplinary Research          
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Universal
Utility-Privacy
Tradeoff
Framework

Information and
Coding Theory

Estimation Theory
Signal Processing

Probability Theory
and Statistics

Communication 
Theory

Game Theory

Computer Science
Statistics



For more: … http://www.arxiv.org

Thank you!
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