Privacy-Utility Tradeoffs of Data Sources

H. Vincent Poor Princeton University

Joint work with Lalitha Sankar, et al. Supported by NSF Grant CCF-10-16671

The Information Revolution

Electronic Data Repositories

 Technological leaps in information processing, storage, and communications has led to the creation of vast electronic data repositories.

By simply clicking on a **blue button** icon, users will be able to download their medical (Medicare/Medicaid) data to their personal computers. – (PubMed Central)

The Privacy Problem

- Explosive growth in electronic information sources that are publicly accessible
 - Google, Facebook, open governance, DMV records, etc.

These electronic information sources can also leak private information!

Utility vs. Privacy

- Utility (benefit) of data repositories is in allowing legitimate users access to statistical/processed data. U.S. Census Bureau
 - e.g., census data
- However, individual information needs to be kept private
 - Private information (e.g., SSN, DoB, credit card) can be potentially inferred from revealed data.
- Private information is application-specific
 - DoB is private for medical but not DMV databases.
 - Census publications may not reveal name, SSN, DoB, address, tel. no. of any individual.
- Need a framework that precisely quantifies the utility-privacy tradeoffs for any application.

Talk Outline

- Database privacy problem
- Smart grid privacy problems
- Summary and future work

Talk Outline

- Database Privacy Problem
 - Source and Perturbation Model
 - Utility and Privacy Metrics
 - Examples
 - Related Results

The Massachusetts Example

Is it sufficient to hide personal information? [Sweeney, '02]

L. Sweeney, "k-anonymity: A model for protecting privacy," Intl. J. Uncertainty, Fuzziness, and Knowledge-based Systems, vol. 10, no. 5, pp. 557–570, 2002.

The Massachusetts Example

Unique identification via correlation from two public databases

L. Sweeney, "k-anonymity: A model for protecting privacy," Intl. J. Uncertainty, Fuzziness, and Knowledge-based Systems, vol. 10, no. 5, pp. 557–570, 2002.

More Examples

- The Netflix competition [2006] to improve movie recommendations
 - Public training data set with movie preferences of 480,000 customers
 - Data was "de-identified" stripped of specific personal details
 - Earth's Biggest Movie Database™

- V. Shmatikov and A. Narayanan [ISSP, '08]
 - Compared film preferences of some anonymous customers with personal profiles on <u>imdb.com</u>,
 - Re-identification using distinguishing information
- Netflix claimed
 - "Anonymity of the study data is comparable to the strictest Federal standards for anonymizing personal health information."

More Examples... Medical Data

- New York Times reports
 - Sale of clinical data is a huge and growing business.
 - De-identified information is "repackaged" and resold.
 - New regulations do NOT forbid sale of de-identified data.
- The opportunities for leakage are growing
 - Query logs, genetics, ...

 De-identification is NOT sufficient for safe disclosure of medical data!

The Privacy Problem is Pervasive

- Sources leak information in unforeseeable ways
 - Intra-source leaks: hidden correlations between public and personal information, e.g., electronic health systems, census (e.g. outliers)
 - inter-source leaks: correlation between sources [Sweeney, Shmatikov]
- But the electronic sources cannot be shut down
 - Tremendous utility provided.
 - Cannot shut down Google or Facebook!
- Can we disclose (utility) while guaranteeing privacy?

Privacy vs. Secrecy!

- Privacy: the ability to prevent unwanted transfer of information (via inference or correlation) when legitimate transfers happen.
- But privacy is not secrecy!
- <u>Secrecy Problem</u>: Protocols and primitives clearly distinguish a malicious adversary vs intended user and secret vs non-secret data.
 - Encryption may be a solution.

Privacy is not Secrecy!

- Privacy: the ability to prevent unwanted transfer of information (via inference or correlation) when legitimate transfers happen.
- But privacy is not secrecy!
- Privacy problem: disclosing data provides informational utility while also enabling potential loss of privacy
 - Every user is potentially an adversary
 - Encryption is not a solution!

What is Utility?

- Data sources exist to be used but utility of a data source can be degraded by privacy requirements.
- "Perfect privacy can be achieved by publishing nothing at all, but this has no utility; perfect utility can be obtained by publishing the data exactly as received, but this offers no privacy" [Dwork '06]
- Thus, maximum utility of a data source is achieved at minimum privacy and vice versa.
- What is the utility-privacy tradeoff for a data source?

C. Dwork, "Differential privacy," in *Proc. 33rd Intl. Colloq. Automata, Language, and Programming*, Venice, Italy, July 2006.

Existing Approaches

Privacy problem lies at the intersection of multiple communities.

- Application-specific approaches without universal guarantees
- CS Theory: differential privacy cryptography motivated definition
 - How to guarantee non-identification
 - Privacy paramount
- Utility vs. privacy tradeoff remains unsolved.

Privacy Problem: A New Insight

Any data source has public and private attributes

L. Sankar, S. R. Rajagopalan, and H. V. Poor. "Utility and privacy of data sources: Can Shannon help conceal and reveal information?," *ITA Workshop*, La Jolla, CA, Feb. 2010.

Privacy Problem: A New Insight

- Any data source has public and private attributes
- Want to reveal public attributes maximally without revealing the private attributes

L. Sankar, S. R. Rajagopalan, and H. V. Poor. "Utility and privacy of data sources: Can Shannon help conceal and reveal information?," *ITA Workshop*, La Jolla, CA, Feb. 2010.

Privacy Problem: A New Insight

- But... private and public attributes are correlated.
- Controlling privacy leakage amounts to controlling the correlation.
- Correlation can be controlled via perturbation of public attributes.
- Best U-P tradeoff: finding the minimal perturbation that achieves a desired correlation.
- Our contribution: a framework based on rate-distortion theory with universal metrics for utility and privacy.

L. Sankar, S. R. Rajagopalan, and H. V. Poor. "Utility and privacy of data sources: Can Shannon help conceal and reveal information?," *ITA Workshop*, La Jolla, CA, Feb. 2010.

The Database Privacy Problem

• A database is a table – rows: individual entries (total of n); columns: attributes for each individual (total of K)

Database: Source Model

• A real database d is (typically) a table with n >> 1 rows (entries) and K columns (attributes)

Our model:

• Database d with n rows is a sequence of n i.i.d. observations of a vector random variable $X = (X_1 X_2 ... X_K)$ with the distribution

$$p_X(x) = p_{X_1 X_2 \dots X_K}(x_1, x_2, \dots, x_K)$$

• Attributes divided into K_r public (revealed) and K_h private (hidden) variables, typically not disjoint

L. Sankar, S. R. Rajagopalan, and H. V. Poor. "A theory of utility and privacy of data sources," *Proc. of IEEE Intl. Symp. Inform. Theory*, Austin, TX, Jun. 13-18 2010.

- The Utility-Privacy Problem:
 - How to reveal the public variables while hiding the private variables given that the two sets are correlated?

 The Utility-Privacy Problem: Rate distortion theory with privacy is a natural fit!

- The Utility-Privacy Problem: Rate distortion theory with privacy is a natural fit!
- Encoder maps d (Xⁿ) to a "sanitized" database (SDB) d'

Encoder:
$$X^n \to \mathcal{W} = \{SDB_1, SDB_2, \dots, SDB_M\}$$

• *M*: number of revealed ("quantized") databases

L. Sankar, S. R. Rajagopalan, and H. V. Poor. "A theory of utility and privacy of data sources," *Proc. of IEEE Intl. Symp. Inform. Theory*, Austin, TX, Jun. 13-18 2010.

- The Utility-Privacy Problem: Rate distortion theory with privacy is a natural fit!
- Encoder maps $d(X^n)$ to a "sanitized" database (SDB) d'

Encoder:
$$X^n \to \mathcal{W} = \{SDB_1, SDB_2, \dots, SDB_M\}$$

- *M*: number of revealed ("quantized") databases
- Decoder: Uses d' to obtain a "reconstructed" database (for query processing)

Decoder: $\mathcal{W}
ightarrow ilde{X}^n_h$

L. Sankar, S. R. Rajagopalan, and H. V. Poor. "A theory of utility and privacy of data sources," *Proc. of IEEE Intl. Symp. Inform. Theory*, Austin, TX, Jun. 13-18 2010.

Utility Metric

- Map utility to fidelity
 - Utility is a measure of closeness of d and d'.
 - Fidelity is affected by added noise, limited precision, suppression.

Encoding Constraint:

• Utility constraints $\Delta_d \rightarrow \text{avg.}$ distortion per entry (row)

$$\Delta_d \equiv \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^n \rho\left(\boldsymbol{X}_{r,i}, \tilde{\boldsymbol{X}}_{r,i}\right)\right] \leq D + \varepsilon$$

- $-\rho$: distance-based function (e.g.: Hamming, Euclidean, K-L)
- D: upper bound on the avg. distortion per entry
- More generally, can bound distortion on all subsets of X_r

Privacy Metric

- Map privacy to equivocation
 - Privacy is a measure of 'uncertainty' about hidden data given revealed data.

Encoding Constraint:

• Privacy constraints $\Delta_p \to \text{equivocation on average per entry (row)}$

$$\Delta_p \equiv \frac{1}{n} H(\mathbf{X}_h^n \mid W) > E - \varepsilon$$

- E: lower bound on the avg. privacy per entry
- More generally, can bound equivocation on all subsets of X_h

The Utility-Privacy Tradeoff

• Utility-privacy tradeoff region (T) is

$$\mathcal{T} \equiv \{(D,E): (D,E) \text{ is feasible}\}$$

- How do we compute T?
- Consider the following source coding problem with privacy constraints

A Source Coding Problem with Privacy

- A source (X,Y) wishes to reveal X subject to a fidelity constraint while keeping Y as private as possible.
 - Revealing X will result in information leakage about Y
- Problem first studied by Yamamoto [IT, '83]

H. Yamamoto, "A source coding problem for sources with additional outputs to keep secret from the receiver or wiretappers," *IEEE Trans. Inform. Theory*, 29(6), Nov. 1983.

A Source Coding Problem with Privacy

- Simplified version of the database privacy problem with.....
 - one private and one public attribute

A Source Coding Problem with Privacy

- Simplified version of the database privacy problem with additional rate constraint
 - Rate constraint bounds the number of "quantized" sequences
 - For U-P tradeoff this seems superfluous

• R(D) is the minimal compression rate for a distortion D

Rate-Distortion-Equivocation Region

Rate-Distortion-Equivocation Region

L. Sankar, S. R. Rajagopalan, and H. V. Poor. "A theory of utility and privacy of data sources," *Proc. of IEEE Intl. Symp. Inform. Theory*, Austin, TX, Jun. 13-18 2010.

The Utility-Privacy Tradeoff

• Recall: utility-privacy tradeoff region \mathcal{T} is

$$\mathcal{T} \equiv \{(D,E): (D,E) \text{ is feasible}\}$$

- Recall: \mathcal{R}_{D-E} : feasible distortion-equivocation pairs
- Theorem [SRP, ISIT '10]:

For a database with utility and privacy constraints, $T = \mathcal{R}_{D-E}$.

L. Sankar, S. Raj Rajagopalan, H. V. Poor, "A theory of privacy and utility in databases," submitted to the *IEEE Trans. Inform. Theory*, Feb. 2011.

Utility-Privacy/RDE Regions

(a): Rate-Distortion-Equivocation Region

(b): Utility-Privacy Tradeoff Region

Example 1: Categorical Database

- Categorical data: finite alphabet data with discrete distribution
 - e.g.: SSN, zipcode, etc.

 The categorical database case has remained largely unaddressed in privacy research until now.

L. Sankar, S. R. Rajagopalan, and H. V. Poor. "An information-theoretic approach to privacy," *Proc. 48th Allerton Conf. Comm., Cntl., and Comp.*, Monticello, IL, Sep, 2010.

Example 1: Categorical Database

- Optimal input to output mapping: reverse 'water-filling'
 - Only x with $p(x) > \lambda$ revealed (λ : water-level).
- Eliminates samples with low probabilities (relative to water-level λ)
 - Equivalent to outlier aggregation/suppression (dominant statistical approaches)
 - Such samples reveal the most information
- As $D \uparrow$, $\lambda \uparrow$ (relative to distribution) to reveal fewer samples

Example 2: Numerical Database

- Numerical data: finite/infinite alphabet real data
 - e.g.: results of medical tests, etc.
 - Medical research often assumes Gaussian distributed data

Privacy Leakage: $L = I(Y; \tilde{X})$

- Sanitized DB remains Gaussian distributed.
 - Gaussian \tilde{X} achieves minimal R(D,E) and maximal privacy $\Gamma(D)$

L. Sankar, S. R. Rajagopalan, and H. V. Poor. "An information-theoretic approach to privacy," *Proc. 48th Allerton Conf. Comm., Cntl., and Comp.*, Monticello, IL, Sep, 2010.

Example 2: Numerical Database

Related Results

The Side Information Problem

Model and U-P tradeoff for decoder side information

The Successive Disclosure Problem

Conditions for no privacy leaks over successive queries relative to one-shot

L. Sankar, S. Raj Rajagopalan, H. V. Poor, "A theory of privacy and utility in databases," submitted to the *IEEE Trans. Inform. Theory*, Feb. 2011.

Multi-user Privacy

R. Tandon, L. Sankar, H. V. Poor, "Multiuser Privacy and Common Information," submitted to *ISIT 2011*.

Discriminatory Coding and Privacy

R. Tandon, L. Sankar, H. V. Poor, "Discriminatory Lossy Source Coding," submitted to *Globecom 2011*.

Talk Outline

- Database privacy problems
- Smart grid privacy problems
- Summary and future work

Smart Grid – Competitive Privacy

- N.A. Grid: interconnected regional transmission organizations which:
 - need to share measurements on state estimation for reliability (utility)
 - wish to withhold information for economic competitive reasons (privacy)
- Leads to a new problem of competitive privacy
 - Our results: precise quantification of state leakage (privacy) vs.
 estimation error (utility) and optimal communication scheme
 - New problem in source coding distributed encoding/decoding

L. Sankar, S. Kar, R. Tandon, and H. V. Poor, "Competitive privacy in the smart grid: An information-theoretic approach," submitted to *IEEE SmartGridComm*, Apr. 2011.

Smart Grid – Smart Meter Privacy

- Smart meter is a critical enabler of the Smart Grid
- For consumers: Tariff- and load-aware appliance usage
- For electricity suppliers: Load balancing; data mining (analytics)
 - Data mining: tremendous utility to supplier; huge consumer privacy risk

Time-series data: utility-privacy tradeoff via rate-distortion for

sources with memory

S. Rajagopalan, L. Sankar, S. Mohajer, and H. V. Poor, "Smart meter privacy: Utility-privacy tradeoff," submitted to *IEEE SmartGridComm*, Apr. 2011.

Talk Outline

- Database privacy problem
- Smart grid privacy problems
- Summary and Future Work

Summary

- The privacy problem is immediate and here to stay ... and multiply...
- One solution will not fit all applications...
- But a framework provides the much needed abstraction
- More needs to be done...

Trying to ward off regulators, the advertising industry has agreed on a standard icon — a little "i" — that it will add to most online ads that use demographics and behavioral data to tell consumers what is happening. – NY Times, Jan. 26, 2010.

Future Work

Privacy in Social Networks:

- Quantifying privacy and utility in social networks
 - Information leakage due to social graph
 - How to quantify utility?

Practical Privacy via Signal Processing:

- Compressive sensing, quantization, clustering, ...
- Universal lossy coding schemes

Medical Database Privacy:

- De-identification and privacy
- Does synthetic data suffice?
- Need for re-identification?

Multi-Disciplinary Research

For more: ... http://www.arxiv.org

Thank you!