

Performance Evaluation: A Randomization Viewpoint

Roberto Tempo

IEIIT-CNR Politecnico di Torino tempo@polito.it

ValueTools 2011

Performance Evaluation in Traditional Communities

 Methodologies and tools for performance evaluation in traditional communities including

o control

- signal processing
- o optimization
- communication networks
- computer science

Outline of this Lecture

- Performance evaluation with uncertainty
- Deterministic (worst case) and probabilistic approaches
- Monte Carlo simulations
- From Monte Carlo to randomized algorithms
- * Sequential methods for design
- Statistical learning techniques

ValueTools 2011

Objective: Check if the peak of the Bode plot (magnitude) is smaller than a given performance level $\gamma > 0$

ValueTools 2011

Consider the linear system

$$\dot{x} = \begin{bmatrix} 0 & 1 \\ -a_0 & -a_1 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u + \begin{bmatrix} 0 \\ 1 \end{bmatrix} w \quad z = \begin{bmatrix} 1 & 0 \end{bmatrix} x$$

with (nominal) parameters

$$a_0 = 1$$
 $a_1 = 0.8$

The transfer function is given by

$$G(s) = \frac{1}{s^2 + s + 0.8}$$

 \mathcal{H}_{∞} Norm

Compute the peak of the modulus of the frequency response of G(s)

z = G(s) w

- We are dealing with SISO systems
- * If the system is stable, this peak is given by the \mathcal{H}_{∞} norm of the transfer function

 $||G(s)||_{\infty} = \sup_{\omega} |G(j\omega)|$

* \mathcal{H}_{∞} performance

$$\|G(s)\|_{\infty} = \sup_{\omega} |G(j\omega)| \le \gamma$$

• Performance is satisfied for $\gamma = 1.35$

Bode plot (magnitude)

ValueTools 2011

ValueTools 2011

represents *uncertainty* bounded in a set Q of radius $\rho > 0$

Example^[1]: Performance Evaluation with Uncertainty

0.84

Consider the uncertain linear system

$$\dot{x} = \begin{bmatrix} 0 & 1 \\ -a_0 & -a_1 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u + \begin{bmatrix} 0 \\ 1 \end{bmatrix} w \qquad z = \begin{bmatrix} 1 & 0 \end{bmatrix} x$$

with parameters $a_0 = 1 + q_0$ $a_1 = 0.8 + q_1$ and bounding set $Q = \{q = [q_0 q_1]^T : ||q||_{\infty} \le \rho\}$

[1] G. Calafiore, F. Dabbene, R. Tempo (2010)

Interval Transfer Function \bullet Take $\rho = 0.025$, the interval transfer function is given by $G(s,q) = \frac{1}{s^2 + (1+q_0)s + (0.8+q_1)}$ where $q_0 \in [-0.025, 0.025], q_1 \in [-0.025, 0.025]$

$$G_{1}(s) = \frac{1}{s^{2} + (1 + 0.025)s + (0.8 + 0.025)} \quad G_{3}(s) = \frac{1}{s^{2} + (1 + 0.025)s + (0.8 - 0.025)}$$
$$G_{2}(s) = \frac{1}{s^{2} + (1 - 0.025)s + (0.8 - 0.025)} \quad G_{4}(s) = \frac{1}{s^{2} + (1 - 0.025)s + (0.8 + 0.025)}$$

- The Bode envelope of (general) interval transfer functions can be easily constructed by means of robust control theory
- * Construct some fixed transfer functions using a subset of the vertices of Q
- For each frequency compute the maximum/ minimum values using the Bode plots of these vertices
- * Worst case \mathcal{H}_{∞} norm can be easily computed^[1]

Example: Bode Plot of $G_1(s)$

* Bode plot of the transfer function $G_1(s)$

Example: Bode Plot of $G_2(s)$

* Bode plot of the transfer function $G_2(s)$

ValueTools 2011

Example: Bode Plot of $G_3(s)$

* Bode plot of the transfer function $G_3(s)$

Example: Bode Plot of $G_4(s)$

* Bode plot of the transfer function $G_4(s)$

Example: Bode Envelope of G(s,q)

Sole envelope of the interval transfer function

Construction of the Bode envelope of the interval transfer function G(s,q)

• Worst case \mathcal{H}_{∞} norm is equal to $\gamma = \sqrt{2}$

* This value is achieved by $G_2(s)$

ValueTools 2011

Example: Radius of Uncertainty
* Given performance level
$$\gamma = \sqrt{2}$$
 the objective is to
compute the maximal radius $\overline{\rho}$ of Q such that
 $G(s,q)$ is stable and $||G(s,q)||_{\infty} \le \gamma$
for all $q \in Q$
* $G(s,q)$ is stable and $||G(s,q)||_{\infty} \le \gamma$ if and only if
 $\rho < 0.8$ and $\frac{(0.8 - \rho)^2}{2 - \sqrt{2}} > 1 + \rho$

Example: Radius of Uncertainty

Largest radius of Q such that performance is satisfied is $\overline{\rho} = 0.025$

Conclusion: Stability and performance are satisfied for all $q \in Q$ with radius $\overline{\rho} = 0.025$

Example: Performance Violation

Increase the radius ρ

Observation: If we allow a small *violation* of performance we may increase the radius ρ significantly

Probabilistic Methods

ValueTools 2011

Performance Violation

* Question: How can we quantify a violation of performance?

We introduce a probabilistic model of uncertainty

Probabilistic Model of Uncertainty

- $\boldsymbol{\ast}$ Probability density function associated to Q
- Assume that q is a random vector or matrix with given density function and support Q
- * Example: Uniform density $\mathcal{U}[Q]$ within Q

$$\mathcal{U}[\mathcal{Q}] = \begin{cases} vol(\mathcal{Q}) & 1 \\ 0 & \text{otherwise} \end{cases}$$

Probability of Performance

Define a performance function

 $J(q): Q \to \mathbf{R}$

 \diamond Given level γ , the probability of performance is

 $\mathbf{P}_J = \operatorname{Prob} \{ q \in Q : J(q) \le \gamma \}$

* Example: If G(s,q) is stable and $J(q) = ||G(s,q)||_{\infty}$ $\mathbf{P}_J = \operatorname{Prob} \{q \in Q : ||G(s,q)||_{\infty} \le \gamma \}$

Measure of Performance Violation

* **Objective:** Achieve probabilistic performance $\mathbf{P}_J = \operatorname{Prob} \{q \in Q: J(q) \le \gamma\} \ge 1 - \varepsilon$ where $\varepsilon \in (0,1)$ is a probabilistic parameter called *accuracy*

Computation of Probability of Performance

Computing

 $\mathbf{P}_J = \operatorname{Prob} \{ q \in Q : J(q) \le \gamma \}$

requires to solve a difficult integration problem

* Taking uniform density $\mathcal{U}[Q]$

$$\operatorname{Prob}\left\{q \in Q : J(q) \le \gamma\right\} = \frac{\int_{J(q) \le \gamma} \mathrm{d}\,q}{\operatorname{vol}(Q)}$$

In some special cases we can easily compute this probability

Take uniform pdf in Q

Allowing 5% violation we increase p of 54% obtaining 0.038 (instead of 0.025)

For several values of ρ we compute $\mathbf{P}_J(\rho)$

ValueTools 2011

ValueTools 2011

Monte Carlo Simulations

 Computation of probability of performance requires Monte Carlo simulations

Take N i.i.d. random samples of q according to the given probability measure

$$q^{(1)}, q^{(2)}, ..., q^{(N)} \in Q$$

This is called multisample

$$q^{1,...,N} = \{q^{(1)}, q^{(2)}, ..., q^{(N)}\}$$

* *N* is the sample complexity

Empirical Probability of Performance

✤ Evaluate

$$J(q^{(1)}), J(q^{(2)}), ..., J(q^{(N)})$$

Construct the empirical probability of performance

$$\hat{\mathbf{P}}_{J}^{N} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{I} \left(J(q^{(i)}) \right)$$

where $I(\cdot)$ denotes the indicator function

$$\mathbf{I}(J(q^{(i)})) = \begin{cases} 1 & \text{if } J(q^{(i)}) \leq \gamma \\ 0 & \text{otherwise} \end{cases}$$

* Consider a probabilistic parameter $\delta \in (0,1)$ called confidence

Law of Large Numbers

* Monte Carlo analysis (Law of Large Numbers) studies the sample complexity such that the probability inequality

$$\left|\mathbf{P}_{J}-\hat{\mathbf{P}}_{J}^{N}\right|\leq\varepsilon$$

holds with probability at least 1- δ

(Additive) Chernoff Bound^[1]

♦ Given ε, $\delta \in (0,1)$, if

$$N \ge N_{\rm ch} = \left[\frac{\log \frac{2}{\delta}}{2\varepsilon^2}\right]$$

then the probability inequality

$$\left|\mathbf{P}_{J}-\hat{\mathbf{P}}_{J}^{N}\right|\leq\varepsilon$$

holds with probability at least 1- δ

[1] H. Chernoff (1952)

Large Deviation Inequality

♦ Given ε ∈ (0,1), the Hoeffding inequality states that

$$\operatorname{Prob}\{\mathbf{q}^{1,\dots,N}: \left|\mathbf{P}_{J}-\hat{\mathbf{P}}_{J}^{N}\right| \geq \varepsilon\} \leq 2e^{-2N\varepsilon^{2}}$$

where e denotes the Euler number

- Hoeffding inequality provides a bound on the tail distribution
- Taking N sufficiently large, we can make the probability of error arbitrarily small
- Theory of rare events

$$\operatorname{Prob}\{\mathbf{q}^{1,\ldots,N}: \left|\mathbf{P}_{J}-\hat{\mathbf{P}}_{J}^{N}\right| \geq \varepsilon\} \leq 2e^{-2N\varepsilon^{2}}$$

- ★ To guarantee confidence δ ∈(0,1), we take N samples such that $2e^{-2Nε^2} \le \delta$ holds
- We obtain the (additive) Chernoff bound

$$N \ge N_{\rm ch} = \left\lceil \frac{\log \frac{2}{\delta}}{2\varepsilon^2} \right\rceil$$

Sample Complexity

- * Chernoff bound provides a fundamental *explicit* relation (sample complexity) $N_{ch} = N_{ch}(\varepsilon, \delta)$ showing that $1/\varepsilon$ enters quadratically and $1/\delta$ logarithmically
- Sample complexity is independent on the problem dimensionality
- * Confidence δ is "cheap" because of logarithm
- * Accuracy ε is computationally more expensive
- Can we improve upon quadratic dependence?

■ (Multiplicative) Chernoff Bound Fox fixed β=β(P̂^N_J) and for given ε, δ ∈ (0,1), if

$$N \ge N_{\rm mu} = \left[\frac{2\log\frac{1}{\delta}}{\varepsilon(1-\beta)^2}\right]$$

then the probability inequality

$$\left|\mathbf{P}_{J}-\hat{\mathbf{P}}_{J}^{N}\right|\leq\varepsilon$$

holds with probability at least 1- δ

A Priori and A Posteriori Analysis Multiplicative Chernoff Bound has sample complexity

- $N_{\rm mu} = N_{\rm mu}(1/\epsilon, \delta, \beta)$ but requires the parameter $\beta = \beta(\hat{\mathbf{P}}_{I}^{N})$ which depends on the empirical probability (a posteriori analysis)
- Additive Chernoff Bound may be used for a priori analysis and has sample complexity $N_{\rm ch} = N_{\rm ch}(1/\epsilon^2, \delta)$

- * Samples $q^{(1)}, q^{(2)}, ..., q^{(N)}$ are i.i.d.
- Contrary to Markov Chain Monte Carlo (MCMC) or sequential Monte Carlo, this approach leads to parallel and distributed simulations
- Sample generation requires tools from important sampling techniques
- Connections with the theory of random matrices^[1]

Finite Families of Performance Functions

Chernoff bounds and the Hoeffding inequality hold only for *fixed* performance function J

Some results are available for a *finite* number of performance functions

Design Paradigm: Randomized Algorithms

Performance Function for Design

* Consider design parameters θ to be determined

Study a design performance function

 $J = J(\theta, q)$

representing system constraints

✤ Replace

 $J(q) \leftrightarrow J(\theta, q)$ $\mathbf{P}_J \leftrightarrow \mathbf{P}_J(\theta)$

Recall that the objective for analysis is to satisfy the probabilistic constraint

 $\mathbf{P}_J = \operatorname{Prob} \{ q \in Q : J(q) \le \gamma \} \ge 1 - \varepsilon$

 \Rightarrow For design, the objective is to find θ such that the probability inequality

 $\mathbf{P}_{J}(\theta) = \operatorname{Prob} \{ q \in Q: J(\theta,q) \le \gamma \} \ge 1 - \varepsilon$

is satisfied

We study randomized sequential algorithms for finding a probabilistic feasible solution θ

Randomized Sequential Algorithms

* The function $J(\theta, q)$ is measurable in q for any fixed value of θ

* *r*-feasibility: For given r > 0, we say that $J(\theta, q) \le \gamma$ is *r*-feasible if the set

 $S = \{ \theta : J(\theta, q) \le \gamma \text{ for all } q \in Q \}$

Definition of *r*-feasibility

contains a (full-dimensional) ball of radius r

Uncertainty Radius and Feasibility

Consider the case when

 $Q = \{q: ||q|| \le \rho\}$

- * If ρ is large the problem is "too hard" and no feasible solution θ exists
- Consider radius ρ as a parameter and perform analysis to check its largest value such that a solution exists
- * Interplay between uncertainty radius ρ and feasibility radius r
- Problems which are unfeasible may be handled with the idea of discarded constraints

Sequential Methods for Design^[1] sequential algorithms for finding Randomized 8 probabilistic feasible solution θ are based on two fundamental ingredients

i) Oracle checking probabilistic feasibility of a candidate solution

ii) Update rule exploiting convexity to construct a new candidate solution based on the oracle outcome

[1] G. Calafiore, F. Dabbene, R. Tempo (2010)

Meta-Algorithm

1. Initialization: set k = 0; choose θ_0

2. Oracle:

return *true* if θ_k is probabilistic
 feasible; Exit return θ_{seq} = θ_k
 otherwise, return *false* and
 violation certificate

3. Update rule: Construct θ_{k+1}
based on θ_k and on q_k
4. Outer iteration: Set k=k+1 and Goto 2

ValueTools 2011

Probabilistic Oracle - 1

- Oracle is the randomized part of the algorithm and decides probabilistic feasibility of the current solution
- * At step k, need to check if the *candidate solution* θ_k satisfies

 $\mathbf{P}_{J}(\theta_{k}) = \operatorname{Prob} \{ q \in Q : J(\theta_{k}, q) \le \gamma \} \ge 1 - \varepsilon$

To this end we perform a Monte Carlo simulation

Probabilistic Oracle - 2 IEIIT-CNR * Generate N_k i.i.d. samples of q within Q (multisample) $q^{(1)}, \ldots, q^{(N_k)} \in Q$ * The candidate solution θ_k is *probabilistic feasible* if $J(\theta_k, q^{(i)}) \leq \gamma$ for all $i = 1, \ldots, N_{\nu}$ ♦ Otherwise if $J(\theta_k, q^{(i)}) > 0$ we set $q_k = q^{(i)}$

Oracle (Inner) Iterations

Consider the multisample size^[1]

$$N_k \ge N_{\text{oracle}} = \left[\frac{\log \frac{\pi^2 (k+1)^2}{6\delta}}{\log \frac{1}{1-\epsilon}}\right]$$

where $\varepsilon, \delta \in (0,1)$ are accuracy and confidence $\diamond N_k$ is the number of Oracle (inner) iterations

Slightly better bound has been obtained using the Riemann function

[1] Y. Oishi (2007)

Update Rule: Gradient Method

Update rule is a classical gradient step

$$\theta_{k+1} = \begin{cases} \theta_k - \eta_k \frac{\partial_k \left(\theta_k\right)}{\left\|\partial_k \left(\theta_k\right)\right\|} & \text{if } \partial_k \left(\theta_k\right) \neq 0\\ \theta_k & \text{otherwise} \end{cases}$$

♦ Let $\alpha > 0$, then the stepsize η_k is given by

$$\eta_{k} = \begin{cases} \frac{J(\theta_{k}, q_{k})}{\|\partial_{k}(\theta_{k})\|} + \alpha & \text{if } \partial_{k}(\theta_{k}) \neq 0\\ 0 & \text{otherwise} \end{cases}$$

 \bullet r is imposed by the desired radius of feasibility

 If D is unknown, then we replace it with an upper bound which can be easily estimated

ValueTools 2011

- * *Successful* exit: The algorithms returns a probabilistic controller θ_{seq}
- * Establish probabilistic properties of θ_{seq}
- * Unsuccessful exit: No solution has been found in N_{outer} iterations
- We have a *certificate of violation* q_k returned by the Oracle showing that the problem is not *r*-feasible

Probabilistic Properties of the Algorithm

* Theorem^[1]

Let Convexity Assumption hold and let $\varepsilon, \delta \in (0,1)$ • The probability that the algorithm terminates at some outer iteration $k < N_{outer}$ returning θ_{seq} having large violation

$$\operatorname{Prob}\{q \in Q: J(\theta_{\operatorname{seq}}, q) > \gamma\} > \varepsilon$$

is less than $\boldsymbol{\delta}$

• If the algorithm reaches the outer iteration N_{outer} then the problem is not *r*-feasible

[1] F. Dabbene, R. Tempo (2010)

Remarks

- Several key differences with stochastic approximation algorithms
- Section 2 Convexity Section 2 Convexity
- Closed-form computation of the subgradient in many cases (e.g. LQ regulators, LMIs)
- Emphasis on finite termination criterion
- Unfeasible problems: Discard a few violated constraints (outliers) to make it feasible^[1,2]

[1] E. W. Bai, H. Cho, R. Tempo, Y. Ye (2002), M. C. Campi, G. Calafiore and S. Garatti (2009)

Advanced Techniques for Update Rule More advanced techniques falling in the class of localization methods can be used instead of gradient update

- ✤ In probabilistic *cutting plane* methods localization set is a polytope; update rule computes the analytic center
- In probabilistic *ellipsoid* algorithm localization set is an ellipsoid; update rule computes the center of the ellipsoid

ValueTools 2011

- Statistical learning theory^[1] is a branch of the theory of empirical processes
- Significant results and applications have been obtained in various areas, including neural networks, system identification, pattern recognition, control
- Main objective is to derive uniform convergence laws and the sample complexity
- No convexity assumption is required

[1] V. N. Vapnik, A. Ya. Chervonenkis (1981)

Uniform Convergence Laws

 Statistical learning theory studies the sample complexity such that the probability inequality

$$|\mathbf{P}_{J}(\boldsymbol{\theta}) - \hat{\mathbf{P}}_{J}^{N}(\boldsymbol{\theta})| \leq \varepsilon$$

holds *uniformly* for all θ with probability at least 1- δ
Recall that Monte Carlo simulation deals with *fixed* parameter θ or with *finite families* of parameters

Constrained Feedback Design with Uncertainty

♦ Consider design parameters $θ ∈ ℝ^n$

* **Objective:** Minimize an objective function $c(\theta)$ subject to the performance constraints

 $J(\theta, q) \leq \gamma$

for all $q \in Q$

The problem is reformulated by means of a binary performance function

ValueTools 2011

Binary Probability of Violation

♦ Given θ ∈ ℝⁿ, the binary probability of violation for the function g(θ, q) is defined as

 $\mathbf{V}_g(\theta) = \operatorname{Prob}\{q \in Q: g(\theta,q) = 1\}$

Semi-Infinite Optimization Problem

Solution of the problem

min $c(\theta)$ subject to $g(\theta, q) = 0$ for all $q \in Q$ $\theta \in \mathbb{R}^n$

where $c: \mathbb{R}^n \to \mathbb{R}$ is a measurable function

* The function $g: \mathbb{R}^n \times Q \rightarrow \{0,1\}$ is (α, m) -Boolean binary if for fixed q it can be written as a Boolean expression involving m polynomials

 $\beta_1(\theta, q), \ldots, \beta_m(\theta, q)$

in the variables θ_i , i=1,..., n and the degree with respect to θ_i of all these polynomials is no larger than α

✤ Example: For fixed q take m=1 and

 $g = \beta_1(\theta) = 3 + 2 \theta_1^2 - 5 \theta_2^4 \theta_3 + \dots + 4 \theta_1^2 \theta_2 \theta_4^7 \qquad \alpha = 7$

Non-Convex Randomized Design

* Theorem^[1]

Let $g(\theta, q)$ be (α, m) -Boolean. Given $\varepsilon \in (0, 0.14)$ and $\delta \in (0, 1)$, if

$$N \ge N_{\text{ncon}}(\varepsilon, \delta, n) = \left\lceil \frac{4.1}{\varepsilon} \left(\log \left(\frac{21.64}{\delta} \right) + 4.39n \log_2 \left(\frac{8e\alpha m}{\varepsilon} \right) \right) \right\rceil$$

where e is the Euler number, then the probability that $V_g(\theta_{ncon}) = Prob\{q \in Q: g(\theta_{ncon}, q) = 1\} > \varepsilon$ is at most δ

[1] T. Alamo, R. Tempo, E. F. Camacho (2009)

ValueTools 2011

Comments

- The function g is a Boolean expression consisting of polynomials; constraints and objective function are non-convex
- Sample complexity result holds for any suboptimal (local) solution
- We can use linearization algorithms to obtain a local solution (no need to compute a global solution)

Main References

- R. Tempo, G. Calafiore and F. Dabbene, "Randomized Algorithms for Analysis and Control of Uncertain Systems," *Springer-Verlag*, London, 2005 (second edition in preparation)
- F. Dabbene and R. Tempo, "Probabilistic and Randomized Tools for Control Design," The Control Handbook (W. S. Levine Ed.), *Taylor & Francis*, 2010
- G. Calafiore, F. Dabbene and R. Tempo "Research on Probabilistic Design Methods," Automatica, 2011 (to appear, preliminary version in my website)

http://staff.polito.it/roberto.tempo/

http://ract.sourceforge.net

©RT 2011

©RT 2011

Randomized Algorithms for Systems and Control Applications

 Aerospace control and unmanned aerial vehicles (UAVs)^[1]

PageRank Computation
in Google, consensus
and aggregation^[2]

[1] L. Lorefice, B. Pralio, R. Tempo (2009)[2] H. Ishii, R. Tempo (2010)

ValueTools 2011