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 Performance Evaluation in 
Traditional Communities

 Methodologies and tools for performance evaluation in
traditional communities including

o control
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o signal processing
o optimization
o communication networks
o computer science
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Outline of this Lecture

 Performance evaluation with uncertainty
 Deterministic (worst case) and probabilistic approaches
 Monte Carlo simulations
 From Monte Carlo to randomized algorithms
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o o e C o o do ed go s
 Sequential methods for design
 Statistical learning techniques
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Performance Evaluation

 Consider a stable transfer function G(s)

z = G(s) wG(s)w z

ValueTools 2011                                                                           ©RT 2011

where w and z are disturbances and errors

Objective: Check if the peak of the Bode plot (magnitude)
is smaller than a given performance level γ > 0
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Performance Evaluation

 Consider a stable transfer function G(s)

z = G(s) wG(s)w z

ValueTools 2011                                                                           ©RT 2011

where w and z are disturbances and errors

Bode plot 
(magnitude)
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 Consider the linear system

Example: Performance 
Evaluation

0 1

0 1 0 0
1 1

x x u w
a a

     
             
  1 0z x
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with (nominal) parameters
a0 = 1 a1 = 0.8

 The transfer function is given by

2

1( )
0.8

G s
s s


 



IEIIT-CNR  

 

 Compute the peak of the modulus of the frequency
response of G(s)

z = G(s) w
 We are dealing with SISO systems

H Norm
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 If the system is stable, this peak is given by the H
norm of the transfer function

||G(s)|| = sup |G(j)|
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 H performance
||G(s)|| = sup |G(j)| ≤ γ

 Performance is satisfied for γ = 1 35

Example: H Norm
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 Performance is satisfied for γ 1.35

Bode plot 
(magnitude)
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 Performance Evaluation 
with Uncertainty

 Consider an uncertain stable transfer function G(s,q)

z = G(s,q) wG(s,q)w z

ValueTools 2011                                                                           ©RT 2011

where w and z are disturbances and errors and q
represents uncertainty bounded in a set Q of radius ρ > 0
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 Consider the uncertain linear system

Example[1]: Performance Evaluation 
with Uncertainty

0 1

0 1 0 0
1 1

x x u w
a a

     
             
  1 0z x
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with parameters
a0 = 1 + q0 a1 = 0.8 + q1

and bounding set
Q = {q = [q0 q1 ]T : ||q||  }

[1] G. Calafiore, F. Dabbene, R. Tempo (2010) 
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 Take  = 0.025, the interval transfer function is
given by

Interval Transfer Function

2
0 1

1( , )
(1 ) (0.8 )

G s q
s q s q
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where q0  [-0.025,0.025], q1  [-0.025, 0.025]

1 2

2 2

1( )
(1 0.025) (0.8 0.025)

1( )
(1 0.025) (0.8 0.025)

G s
s s

G s
s s


   


   

3 2

4 2

1( )
(1 0.025) (0.8 0.025)

1( )
(1 0.025) (0.8 0.025)

G s
s s

G s
s s
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 The Bode envelope of (general) interval transfer
functions can be easily constructed by means of
robust control theory

 Construct some fixed transfer functions using a
b f h i f Q

The Bode Envelope
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subset of the vertices of Q
 For each frequency compute the maximum/

minimum values using the Bode plots of these
vertices

 Worst case H norm can be easily computed[1]

[1] C. V. Hollot, R. Tempo (1991) 
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 Bode plot of the transfer function G1(s)

Example: Bode Plot of G1(s)
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 Bode plot of the transfer function G2(s)

Example: Bode Plot of G2(s)
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 Bode plot of the transfer function G3(s)

Example: Bode Plot of G3(s)
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 Bode plot of the transfer function G4(s)

Example: Bode Plot of G4(s)
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 Bode envelope of the interval transfer function

Example: Bode Envelope of G(s,q)
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 Construction of the Bode envelope of the interval
transfer function G(s,q)

 Worst case H norm is equal to
 This value is achieved by G2(s)

Example: Worst Case 
H Norm  of G(s,q)

γ= 2

ValueTools 2011                                                                           ©RT 2011

y 2( )
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 Given performance level the objective is to
compute the maximal radius of Q such that

G(s,q) is stable and ||G(s,q)||  
for all q  Q

Example: Radius of Uncertainty

ρ
γ= 2
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 G(s,q) is stable and ||G(s,q)||   if and only if

 < 0.8 and
2(0 .8 ρ ) 1 ρ

2 2


 




IEIIT-CNR  

 

Example: Radius of Uncertainty

Largest radius of Q such
that performance is 
satisfied is    = 0.025ρ
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Conclusion: Stability 
and performance are 
satisfied for all q  Q
with radius     = 0.025 ρ



IEIIT-CNR  

 

Example: Performance Violation

Increase the radius 

Observation: If we 
allow a small violation
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allow  a small violation
of performance we may 
increase the radius 
significantly
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Probabilistic Methods
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Performance Violation

 Question: How can we quantify a violation of

performance?

 We introduce a probabilistic model of uncertainty

ValueTools 2011                                                                           ©RT 2011
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Probabilistic Model of Uncertainty

 Probability density function associated to Q

 Assume that q is a random vector or matrix with given

density function and support Q
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 Example: Uniform density 

U [Q] within Q
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Uniform Density U [Q] 

 Univariate uniform density

b

1/(b-a)
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 Multivariate uniform density

 
1 if
( )
0 otherwise

q Q
vol QQ

  


U

a b
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Probability of Performance

 Define a performance function

J(q): Q → R

 Given level , the probability of performance is

ValueTools 2011                                                                           ©RT 2011

PJ = Prob{q Q: J(q)   }

 Example: If G(s,q) is stable and J(q) = ||G(s,q)||

PJ = Prob{q Q: ||G(s,q)||   }
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Measure of Performance Violation

 Objective: Achieve probabilistic performance
PJ = Prob{q Q: J(q)   } ≥ 1 - 

where   (0,1) is a probabilistic parameter called
accuracy

ValueTools 2011                                                                           ©RT 2011

accuracy
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 Computation of Probability 
of Performance

 Computing
PJ = Prob{q Q: J(q)   }

requires to solve a difficult integration problem
 Taking uniform density U [Q]
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 Taking uniform density U [Q]

 In some special cases we can easily compute this
probability

  ( ) γ
d

Prob : ( ) γ 
( )

J q
q

q Q J q
vol Q
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 Example: Performance
Violation

Take uniform pdf in Q

Allowing 5% violation
we increase  of 54%
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we increase  of 54% 
obtaining 0.038 
(instead of  0.025)

For several values of 
we compute PJ (



IEIIT-CNR  

 

Degradation of Performance

If a 5% 
violation is 
allowed we 
increase  of 54%

PJ (ρ)

ValueTools 2011                                                                           ©RT 2011

0.038

increase  of 54%
obtaining 0.038 

Radius 0.038 
compared 
to      = 0.025ρ

0.038=0.025ρ
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Advanced Simulation Tools



IEIIT-CNR  

 

Monte Carlo Simulations

 Computation of probability of performance requires
Monte Carlo simulations

 Take N i.i.d. random samples of q according to the given
probability measure

ValueTools 2011                                                                           ©RT 2011

q(1), q(2), …, q(N)  Q
 This is called multisample

q1,…,N = {q(1), q(2), …, q(N)}
 N is the sample complexity
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Empirical Probability of Performance

 Evaluate
J(q(1)), J(q(2)), …, J(q(N))

 Construct the empirical probability of performance

 ( )1ˆ ( )
N

N iJP I
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where I (·) denotes the indicator function

 ( )

1
( )N i

J
i

J q
N 

 P I

( )
( ) 1 if ( ) γ

( ( ))
0 otherwise

i
i J q

J q
 

 


I
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Law of Large Numbers

 Consider a probabilistic parameter   (0,1) called
confidence

 Monte Carlo analysis (Law of Large Numbers) studies
the sample complexity such that the probability

ValueTools 2011                                                                           ©RT 2011

the sample complexity such that the probability
inequality

holds with probability at least 1- 

ˆ εN
J J P P
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(Additive) Chernoff Bound[1]

 Given ,  (0,1), if

2
δ

ch 2

log
2ε

N N      
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then the probability inequality

holds with probability at least 1- 

[1] H. Chernoff (1952)

ˆ εN
J J P P



IEIIT-CNR  

 

Large Deviation Inequality

 Given  (0,1), the Hoeffding inequality states that

where e denotes the Euler number

ffdi i li id b d h il

21, , 2 εˆProb{q : ε}  2eN N N
J J

   P P
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 Hoeffding inequality provides a bound on the tail
distribution

 Taking N sufficiently large, we can make the probability
of error arbitrarily small

 Theory of rare events
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 Hoeffding Inequality and 
Chernoff Bound

 Consider the Hoeffding inequality

 To guarantee confidence  (0,1), we take N samples
such that 2e-2N2 ≤  holds

21, , 2 εˆProb{q : ε}  2eN N N
J J

   P P
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such that 2e-2N ≤  holds

 We obtain the (additive) Chernoff bound

2
δ

ch 2

log
2ε

N N      
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Sample Complexity

 Chernoff bound provides a fundamental explicit relation
(sample complexity) Nch = Nch(, ) showing that 1/
enters quadratically and 1/ logarithmically

 Sample complexity is independent on the problem
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 Sample complexity is independent on the problem
dimensionality

 Confidence  is “cheap” because of logarithm
 Accuracy  is computationally more expensive
 Can we improve upon quadratic dependence?
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(Multiplicative) Chernoff Bound 

 (Multiplicative) Chernoff Bound
Fox fixed and for given ,  (0,1), if

1
δ

mu 2

2log
N N

 
   

ˆβ=β( )N
JP
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then the probability inequality

holds with probability at least 1- 

mu 2ε(1-β) 
 

ˆ εN
J J P P
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A Priori and A Posteriori Analysis

 Multiplicative Chernoff Bound has sample complexity
Nmu = Nmu(1/, , β) but requires the parameter
which depends on the empirical probability (a
posteriori analysis)

ˆβ=β( )N
JP
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 Additive Chernoff Bound may be used for a priori
analysis and has sample complexity Nch = Nch(1/2,)
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Parallel and Distributed Simulations

 Samples q(1), q(2), …, q(N) are i.i.d.
 Contrary to Markov Chain Monte Carlo (MCMC) or

sequential Monte Carlo, this approach leads to parallel
and distributed simulations
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 Sample generation requires tools from important
sampling techniques

 Connections with the theory of random matrices[1]

[1] G. Calafiore, F. Dabbene, R. Tempo (2000)
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 Finite Families of 
Performance Functions

 Chernoff bounds and the Hoeffding inequality hold only
for fixed performance function J

 Some results are available for a finite number of
performance functions
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performance functions
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Design Paradigm: Randomized Algorithms
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Design Paradigm: Randomized Algorithms
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Performance Function for Design

 Consider design parameters  to be determined

 Study a design performance function

J = J( q)

i i
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representing system constraints

 Replace

(θ)J JP P

( ) (θ, )J q J q
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Design Objective

 Recall that the objective for analysis is to satisfy the
probabilistic constraint

PJ = Prob{q Q: J(q)   } ≥ 1 - 
 For design, the objective is to find θ such that the

ValueTools 2011                                                                           ©RT 2011

g , j
probability inequality

PJ (θ) = Prob{q Q: J(θ,q)   } ≥ 1 – 

is satisfied
 We study randomized sequential algorithms for finding a

probabilistic feasible solution 
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R d i d S i l Al i h
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Randomized Sequential Algorithms



IEIIT-CNR  

 Convexity Assumption for 
Design Parameters 

 Convexity: The function J( q) is convex in  for any
fixed value of q  Q

convex function
J(, ·)

ValueTools 2011                                                                           ©RT 2011

 The function J( q) is measurable in q for any fixed
value of 

convex function
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Definition of r-feasibility

 r-feasibility: For given r > 0, we say that J( q) ≤  is r-
feasible if the set

S = {: J( q) ≤  for all q Q }
contains a (full-dimensional) ball of radius r

ValueTools 2011                                                                           ©RT 2011

( )

S
ball of radius r

feasibility set
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Uncertainty Radius and Feasibility

 Consider the case when
Q = {q q ≤ ρ}

 If ρ is large the problem is “too hard” and no feasible
solution θ exists
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 Consider radius ρ as a parameter and perform analysis to
check its largest value such that a solution exists

 Interplay between uncertainty radius ρ and feasibility
radius r

 Problems which are unfeasible may be handled with the
idea of discarded constraints
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Sequential Methods for Design[1]

 Randomized sequential algorithms for finding a
probabilistic feasible solution  are based on two
fundamental ingredients

ValueTools 2011                                                                           ©RT 2011

i) Oracle checking probabilistic feasibility of a candidate
solution

ii) Update rule exploiting convexity to construct a new
candidate solution based on the oracle outcome

[1] G. Calafiore, F. Dabbene, R. Tempo (2010) 
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Meta-Algorithm

1. Initialization: set k = 0; choose 0

2. Oracle:
o return true if k is probabilistic
f ibl E it t  

Initialization

Oracle
seq

k=0

ValueTools 2011                                                                           ©RT 2011

k+1

feasible; Exit return seq= k

o otherwise, return false and
violation certificate

3. Update rule: Construct k+1

based on k and on qk

4. Outer iteration: Set k=k+1 and Goto 2

Update rule

Outer
iteration

k

k=k+1
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Probabilistic Oracle - 1

 Oracle is the randomized part of the algorithm and
decides probabilistic feasibility of the current solution

 At step k, need to check if the candidate solution θk
satisfies

ValueTools 2011                                                                           ©RT 2011

PJ (θk) = Prob{q Q: J(θk,q)   } ≥ 1 – 

 To this end we perform a Monte Carlo simulation
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Probabilistic Oracle - 2

 Generate Nk i.i.d. samples of q within Q (multisample)
q(1), ... , qNk) Q

 The candidate solution k is probabilistic feasible if
J(k qi)) ≤ 

ValueTools 2011                                                                           ©RT 2011

( k q ) 
for all i =1, ... , Nk

 Otherwise if J(k qi) ) > 0 we set qk qi)
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Oracle (Inner) Iterations

 Consider the multisample size[1]

2 2π ( 1)
6δ

oracle 1
1 ε

log
log

k

kN N
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where     (0,1) are accuracy and confidence
 Nk is the number of Oracle (inner) iterations

 Slightly better bound has been obtained using the
Riemann function

[1] Y. Oishi (2007) 
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Update Rule: Gradient Method

 Update rule is a classical gradient step
 

1

θ
θ η if (θ ) 0

(θ )θ
θ otherwise

k k
k k k k

k kk

k
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 Let α > 0, then the stepsize k is given by

 θ ,
if (θ ) 0

η ( )
0 otherwise

k k
k k

k k k

J q
θ
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Outer Iterations

 Define

where D is the distance between the initial solution 
and the center of a ball of radius r contained in the

2

outer 2

DN
r
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solution set S

center of the ball

 r is imposed by the desired radius of feasibility
 If D is unknown, then we replace it with an upper bound

which can be easily estimated

feasibility set
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Successful/Unsuccessful Exit

 Successful exit: The algorithms returns a probabilistic
controller seq

 Establish probabilistic properties of seq

 Unsuccessful exit: No solution has been found in Nouter

ValueTools 2011                                                                           ©RT 2011

iterations
 We have a certificate of violation qk returned by the

Oracle showing that the problem is not r-feasible
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 Probabilistic Properties 
of the Algorithm

 Theorem[1]

Let Convexity Assumption hold and let    (0,1)
o The probability that the algorithm terminates at

some outer iteration k < Nouter returning seq having

ValueTools 2011                                                                           ©RT 2011

large violation
Prob{q Q: J(θseq, q) >  } > 

is less than 
o If the algorithm reaches the outer iteration Nouter

then the problem is not r-feasible

[1] F. Dabbene , R. Tempo (2010) 
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Remarks

 Several key differences with stochastic approximation
algorithms

 Explicit use of convexity
 Closed-form computation of the subgradient in many

ValueTools 2011                                                                           ©RT 2011

cases (e.g. LQ regulators, LMIs)
 Emphasis on finite termination criterion
 Unfeasible problems: Discard a few violated constraints

(outliers) to make it feasible[1,2]

[1] E. W. Bai, H. Cho, R. Tempo, Y. Ye  (2002), M. C. Campi, G. Calafiore and S. Garatti (2009) 
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Advanced Techniques for Update Rule 

 More advanced techniques falling in the class of
localization methods can be used instead of gradient
update

 In probabilistic cutting plane
th d l li ti t i

ValueTools 2011                                                                           ©RT 2011

methods localization set is a
polytope; update rule computes
the analytic center

 In probabilistic ellipsoid
algorithm localization set is
an ellipsoid; update rule computes
the center of the ellipsoid
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Statistical Learning Theory
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Statistical Learning Theory

 Statistical learning theory[1] is a branch of the theory of
empirical processes

 Significant results and applications have been obtained
in various areas, including neural networks, system
id ifi i i i l

ValueTools 2011                                                                           ©RT 2011

identification, pattern recognition, control
 Main objective is to derive uniform convergence laws

and the sample complexity
 No convexity assumption is required

[1] V. N. Vapnik, A. Ya. Chervonenkis  (1981)   
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Uniform Convergence Laws

 Statistical learning theory studies the sample complexity
such that the probability inequality

ˆ(θ) (θ) εN
J J P P
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holds uniformly for all  with probability at least 1- 
 Recall that Monte Carlo simulation deals with fixed

parameter  or with finite families of parameters
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 Constrained Feedback Design 
with Uncertainty

 Consider design parameters   Rn

 Objective: Minimize an objective function c() subject
to the performance constraints

J(, q) ≤ γ

ValueTools 2011                                                                           ©RT 2011

for all q  Q
 The problem is reformulated by means of a binary

performance function
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Binary Performance Function g

 Consider the (measurable) binary performance function
g: Rn x Q → {0,1}

defined as

 
0 if (θ, ) γ

θ
J q 
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 θ,
1 otherwise

g q  
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Binary Probability of  Violation

 Given   Rn , the binary probability of violation for the
function g( q) is defined as

Vg (θ) = Prob{q Q: g(θ,q) = 1 }

ValueTools 2011                                                                           ©RT 2011
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Semi-Infinite Optimization Problem

 Find the optimal/suboptimal solution of the problem

min c() subject to g( q) = 0 for all q Q
Rn

ValueTools 2011                                                                           ©RT 2011

where c: Rn → R is a measurable function
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 Randomized Non-Convex 
Optimization Problem

 Generate N i.i.d. samples (multisample) within Q

q1,…,N = {q(1), ... , qN)}

according to a given probability measure

(l l) l i f h
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 Compute a (local) solution of the non-convex
randomized optimization problem

ncon = arg min c() subject to g(q(i)) = 0, i =1,…, N
Rn
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Boolean Binary Function g

 The function g: Rn x Q → {0,1} is (α, m)-Boolean
binary if for fixed q it can be written as a Boolean
expression involving m polynomials

β1( q) β ( q)

ValueTools 2011                                                                           ©RT 2011

β1( q), …, βm( q)

in the variables i, i=1,… , n and the degree with respect
to i of all these polynomials is no larger than α

 Example: For fixed q take m=1 and

g = β1() = 3 + 2 2 – 5  3+ … + 4 1
2 2 4

7 α = 7
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Non-Convex Randomized Design

 Theorem[1]

Let g( q) be (α, m)-Boolean. Given  (0,0.14) and 
(0,1), if

4.1 21.64 8eαδ l 4 39 l mN N ( )
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where e is the Euler number, then the probability that 
Vg (ncon) = Prob{q Q: g(θncon, q) = 1} > 

is at most 
[1] T. Alamo, R. Tempo, E. F. Camacho (2009)

ncon 2
4.1 21.64 8eαε,δ log 4.39 log
ε δ ε

mN N ( ,n ) n           
     



IEIIT-CNR  

 

Comments

 The function g is a Boolean expression consisting of
polynomials; constraints and objective function are
non-convex

 Sample complexity result holds for any suboptimal
(local) solution

ValueTools 2011                                                                           ©RT 2011

(local) solution
 We can use linearization algorithms to obtain a local

solution (no need to compute a global solution)
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RACT
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RACT
Randomized Algorithms Control Toolbox 

http://ract.sourceforge.net
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Conclusions
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 Randomized Algorithms for Systems 
and Control Applications

 Aerospace control and
unmanned aerial vehicles
(UAVs)[1]
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 PageRank Computation
in Google, consensus
and aggregation[2]

[1] L. Lorefice, B. Pralio, R. Tempo (2009)
[2] H. Ishii, R. Tempo (2010)


