

Information-Theoretic Secrecy Metrics

Perfect versus asymptotic secrecy

Matthieu Bloch 2011

- Message $M \in [[1, 2^{nR}]]$ observed through Z^n
 - ▶ joint distribution *p_{MZⁿ}*
- Perfect secrecy: M statistically independent of Z^n
- distribution $p_{MZ^n} = p_M p_{Z^n}$
- Asymptotic perfect secrecy: *M* statistically independent of Zⁿ in the limit of *n* going to ∞

3

 $\lim_{n\to\infty}S_i(p_{MZ^n},p_Mp_{Z^n})=0$

Motivation

Secrecy metrics and examples

Information-Theoretic Secrecy Metrics

Choice of metrics

201

Matthieu Bloch

© Matthieu Bloch 201

Kullback-Leibler divergence

 $S_{1}(p_{MZ^{n}}, p_{M}p_{Z^{n}}) = \mathbb{D}(p_{MZ^{n}} || p_{M}p_{Z^{n}})$ $S_{4}(p_{MZ^{n}}, p_{M}p_{Z^{n}}) = \frac{1}{n} \mathbb{D}(p_{MZ^{n}} || p_{M}p_{Z^{n}})$

Variational distance

 $S_{2}(p_{MZ^{n}}, p_{M}p_{Z^{n}}) = \mathbb{V}(p_{MZ^{n}}, p_{M}p_{Z^{n}})$ $S_{5}(p_{MZ^{n}}, p_{M}p_{Z^{n}}) = \frac{1}{n}\mathbb{V}(p_{MZ^{n}}, p_{M}p_{Z^{n}})$

Probability of outage

 $S_3(p_{MZ^n}, p_M p_{Z^n}) = \mathbb{P}(\mathrm{I}(M; Z^n) > \epsilon)$ $S_6(p_{MZ^n}, p_M p_{Z^n}) = \mathbb{P}(\frac{1}{n}\mathrm{I}(M; Z^n) > \epsilon)$

Information-Theoretic Secrecy Metrics

Not all metrics are equal

Coding Mechanisms

Secure communication

Transmission over noisy Gaussian channel

$$M \in \{-1, +1\}$$
 $Z = M + N$ with $N \sim \mathcal{N}(0, \sigma^2)$

Coding Mechanisms Secret-key distillation Secret-key distillation $Z \in \{-1; +1\}$ $Z \sim \mathcal{B}(\frac{1}{2})$ X = Z + N with $N \sim \mathcal{N}(0, \sigma^2)$ $X \longrightarrow \emptyset \cup \mathcal{K}$ • One can show $\mathbb{V}(p_{K|Z=\pm 1}, p_K) = \mathcal{O}(\sigma^{-3})$ • Possible to extract secrecy from noisy source • Can we code using the same principle ?

Goals of Talk

Discuss coding mechanisms for secure communication over noisy channels

Discuss coding mechanisms for secret-key distillation from noisy sources

9

Matthieu Bloch 2011 Get insight into the design of practical coding schemes

Channel Resolvability

Coding for secure communication

Secrecy from Resolvability

Matthieu Bloch 201⁻

Matthieu Bloch 2011

▶ How do we ensure secrecy ?

$$\mathbb{V}(p_{MZ^{n}|\mathcal{C}_{n}}, p_{M}p_{Z^{n}|\mathcal{C}_{n}}) \leq 2\sum_{m} p_{M}(m)\mathbb{V}(p_{Z^{n}|M=m,\mathcal{C}_{n}}, q_{Z^{n}})$$

- $p_{Z^n|M=m,C_n}$ distribution induced by message m
- ▶ *q_{Zⁿ}* "target distribution"

Sufficient condition for secrecy

All messages should induce the same distribution

Channel Resolvability

To the the term of te

Capacity Versus Resolvability

Matthieu Bloch 2011

- "Capacity-based" wiretap codes
- Code structure based on capacity
- Few enough codewords to ensure reliability
- Bins are capacity achieving codes $R' = \mathbb{I}(X; Z) \epsilon_n$

Resolvability is more powerful than capacity

- Random capacity-based codes cannot achieve strong secrecy capacity
- Random resolvability-based codes achieve strong secrecy capacity
 [Bloch 2011; Luzzi & Bloch 2011]

Take Aways

Channel Intrinsic Randomness

Coding for secret-key distillation

201

Matthieu Bloch

Capacity Versus Intrinsic Randomness

- "Capacity-based" key-distillation strategies
- Code structure based on capacity
- Enough bins to ensure reliability

•

▶ Bins are capacity achieving for source coding with side information R' = ℍ(X|Z) + ϵ_n

Coding Structure of Key-Distillation Scheme

- Binning structure
 - observed sequences fall into bins
 - use bin index for public information and key
- Intuitively
 - enough bins to ensure reliability:

bins small enough to guarantee intrinsic randomness:

 $R < \mathbb{H}(X|Z)$

Take Aways

Matthieu Bloch 2011

Matthieu Bloch 2011

 Intrinsic randomness as coding mechanism for secret-key distillation

- > Fundamentally different from secure communications
- How existing key-distillation techniques operate (privacy amplification)

Conclusion

Matthieu Bloch 2011

Follow Up

References

- Bloch & Laneman, "Secrecy from resolvability," on arXiv soon
- Pierrot & Bloch, "Strongly secure communication over the two-way wiretap channel," *IEEE Trans. Info. Forensics and Security*, 2011, arXiv:1010.0177
- Bloch, "Achieving secrecy: capacity vs. resolvability," ISIT 2011
- Luzzi & Bloch, "Capacity-based random codes cannot achieve strong secrecy over symmetric wiretap channels," Securenets 2011
- Bloch, "Channel intrinsic randomness," *ISIT 2010*

Wrapping Up

Matthieu Bloch 2011

- Channel Intrinsic Randomness as coding mechanism for secretkey distillation from noisy sources
- Channel Resolvability as coding mechanism for secure communication over noisy channels
- Powerful and (conceptually) simple information-theoretic tools
 - Applications to general settings
 - Guidelines for code design