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Networked interaction: Societal, engineered, & hybrid




Game formulations

e Game elements:

— Actors/players

— Choices

— Preferences over collective choices

— Solution concept (e.g., Nash equilibrium)

e Descriptive agenda:

— Modeling of natural systems
— Game elements inherited
— Modeling metrics

e Prescriptive agenda:

— Distributed optimization for engineered (programmable!) systems
— Game elements designed
— Performance metrics



Main message

Arrow, 1987: The attainment of equilibrium requires a
disequilibrium process.

Skyrms, 1992: The explanatory significance of the equilibrium
concept depends on the underlying dynamics.



Background: Game theoretic learning

Arrow: “The attainment of equilibrium requires a disequilibrium process.”

Skyrms: “The explanatory significance of the equilibrium concept
depends on the underlying dynamics.”

e Monographs:

— Weibull, Evolutionary Game Theory, 1997.

- Young, Individual Strategy and Social Structure, 1998.

— Fudenberg & Levine, The Theory of Learning in Games, 1998.

— Samuelson, Evolutionary Games and Equilibrium Selection, 1998.
- Young, Strategic Learning and Its Limits, 2004.

— Sandholm, Population Dynamics and Evolutionary Games, 2010.

e Surveys:

— Hart, “Adaptive heuristics”, Econometrica, 2005.
— Fudenberg & Levine, “Learning and equilibrium”, Annual Review of Economics, 2009.



Learning among learners

¢ Single agent adaptation:

— Stationary environment
— Asymptotic guarantees

e Multiagent adaptation:

Environment

Other learning agents

=

Non-stationary

e A is learning about B, whose behavior depends on
A, whose behavior depends on B...i.e., feedback

e Resulting non-stationarity has major implications
on achievable outcomes.



lllustration: Fictitious play & stability

e Setup: Repeated play
e Each player:

— Maintains empirical frequencies (histograms) of other player actions

— Forecasts (incorrectly) that others are playing randomly and independently according
to empirical frequencies

— Selects an action that maximizes expected payoff

e Convergence: Zero sum games (1951); 2 x 2 games (1961); Potential games (1996);
2 x N games (2003).

e Non-convergence: Shapley fashion game (1964); Jordan anti-coordination game (1993);
Foster & Young merry-go-round game (1998).



lllustration: RPS & chaos

e Setup: Continuous-time “replicator dynamics” on perturbed RPS

e Sato et al (PNAS 2002): Chaos in learning a simple two-person game
“Many economists have noted the lack of any compelling account of how agents might
learn to play a Nash equilibrium. Our results strongly reinforce this concern, in a game
simple enough for children to play.”



lllustration: Stochastic adaptive play & selection

A B S H
Al4,4/0,0 S 32,32 0,1
B10,0|3,3 H 1,0 1,1

Typewriter Game Stag Hunt

e How to distinguish equilibria?
e Payoff based distinctions: Payoff dominance vs Risk dominance
e Evolutionary (i.e., dynamic) distinction

— Young (1993) “The evolution of convention”
— Kandori/Mailath/Rob (1993) “Learning, mutation, and long-run equilibria in games”
— many more...

e Adaptive play:
— “Two” players sparsely sample from finite history

— Players either:

x Play best response to selection
+ Experiment with small probability

— Young (1993): Risk dominance is “stochastically stable”



Outline

Stability

Selection

Descriptive | explanation

refinement

Prescriptive | adaptation

efficiency

e Transient phenomena & stability
e Transient phenomena & selection

e Stochastic stability & self-organization

e Network formation, self-assembly, language evolution



Setup: Basic notions

e Setup:
- Players: {1, ..., p}
— Actions: a; € A;
— Action profiles:
(CLl,CI/Q, ...,ap) ceA=A4A; x Ay x ... X .Ap
— Payoffs: w; : (a1, as, ..., a,) = (a;,a—;)) — R

e Nash equilibrium: Action profile a* € A is a NE if for all players:

uz’(a? CL;, ) CL;) = ui(a;ka ai@) > UZ'(CL;, a*—z)

e Learning dynamics:
~t=0,1,2,..
= Pra;(t)] = ( ), pilt) € A(A)
— pi(t) = F;(available info at time t)
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Setup: Continuous vs discrete time dynamics

e Stochastic approximation:

z(t+1) =a(t) + H%(rand[F(:c(t))]) — Ccii_f = F(x)

e Summary: Continuous-time analysis has discrete-time implications
e lllustrations (two player):

— Smooth fictitious play:

e +1) = 110+ —= (8.04(0) - 1)
y
% = —fi + Bi(f-i)
— Reinforcement learning:
plt 1) = pilt) + - wla(t) - (ai) — pi(0)
y
% = (diag[Mip—i] — diag [pz'Tsz—z’])pz'

replicator dynamics
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Uncoupled dynamics & nonconvergence

e Uncoupled dynamics:

— The learning rule for each player does not depend (explicitly) on the payoff functions
of the other players.

— Satisfied by fictitious play & replicator dynamics

e Hart & Mas-Colell (2003): There are no uncoupled dynamics that are guaranteed to
converge to Nash equilibrium.
Analysis: Jordan anti-coordination game is universal counterexample.
(cf., Saari & Simon (1978))

e Three players & two actions

— Player 1 # Player 2
— Player 2 # Player 3 i % E

— Player 3 # Player 1 :» N
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Uncoupled dynamics & convergence?

angal beequrcies
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Jordan Example under ADFP, lambda = 25, gamma = 032072, tau= 0.1
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Dynamic vs static processing

e Negative results only apply to static learning rules

ng: (t) = Fi(pi(t), p-i(t); M;)

(applies to fictitious play & replicator dynamics)

e What about dynamic learning rules?
dp; -
E(t) = Fi(pi(+), p—i(+); M;)

e Marginal forecast dynamics: A

— React to myopic predictions
— FP: Best response to forecast empirical frequency
— Replicator dynamics: React to forecast fithess

near term

e Features:

— Purely transient
— Still uncouplead!
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Marginal forecasts

e ATL traffic: “dam Factor” Holding, Building, Clearing

View City Area Information

Y| By Road: Hotspots | All Roads | Recently Viewed
By Type: Incidents | Construction | Events | Mass Transt

-
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e Background:

- Basar (1987), “Relaxation techniques and asynchronous algorithms for online computation of noncooperative equilibria”
- Selten (1991), “Anticipatory learning in two-person games”

— Conlisk (1993), “Adaptation in game: Two solutions to the Crawford puzzle”

- Tang (2001), “Anticipatory learning in two-person games: Some experimental results”

- Hess & Modjtahedzadeh (1990), “A control theoretic model of driver steering behavior”

— McRuier (1980), “Human dynamics in man-machine systems”
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Analysis: Marginal forecast fictitious play

d?“i
ar )‘(fz - T@)

=—fi+ 0 (f—i + det_i)

df,
dt

e Approximation for A > 1:
C LS,
dt  dt| =~ X|di? |

e Note: Auxiliary variables absent from prior impossibility result!
¢ JSS & Arslan, 2005: For large A

— FP stable at NE p* implies marginal foresight FP stable at ¢* for 0 <~ < 1

— FP unstable at p* with eigenvalues z; + jy; and
Ti 8l 1
max — 5 < <
koxpt+y,  1—7v  maxgaxyg

implies marginal foresight FP stable at p*.

e Similar results:

— Marginal foresight replicator dynamics
— Marginal foresight tatonnement
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Transient behavior & equilibrium selection

e Reinforcement learning: z; = action propensities

Ti(t 4+ 1) = 2;(t) + 6(t)(ai(t) — x3(t)), O(t) = wi(a(t))

pilt) = (1= e)a(t) + 1

u;(a(t))

dstd(t) = 1TU,(t) + us(a(t))

Interpretation: Increased probability of utilized action.

e Dynamic reinforcement learning: Introduce running average

1

yi(t + 1) = yi(t) + H—l(xz(t) — yi(t))

pi(t) = (1 —e)lla |@i(t) + yl@i(t) —uit)) | + %1

Ve

new term
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Marginal foresight dominance

e Chasparis & JSS (2009): The pure NE a* has positive probability of convergence iff
ui(al,a_;) — ui(al,a*;) + 1

ui(%? a’*—z)

0< < , Va, #a}

(as opposed to all pure NE)
Proof: ODE method of stochastic approximation.

e Implication:
— Introduction of “forward looking” agent can destabilize equilibria
— Surviving equilibria = equilibrium selection

e For 2 x 2 symmetric coordination games

— RD & not PD = foresight dominance
— RD & PD & Identical interest = foresight dominance
— RD & PD together #- foresight dominance
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Illustration: Network formation

e Setup:
— Agents form costly links with other agents
— Benefits inherited from connectivity
w;(a(t)) = (# of connections to z) — K- (# of links by z)

e Properties:

— Nash networks are “critically connected”
— Wheel network is unique efficient network
— Chasparis & JSS (2009): The wheel network is foresight dominant.

AYA

2-K

e Recent work considers transient establishment costs
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Selection & self-assembly

AN

/ - W—W®
e Atoms form subassembilies. l
e Subassemblies form complete assemblies.

e References:

- Yim, Shen, Salemi, Rus, Moll, Lipson, Klavins, & Chirikjian, “Modular self-reconfigurable
robot systems: Challenges and opportunities for the future”, 2007.

- Klavins, “Programmable self-assembly”, 2007.

20



Self assembly, cont

\
/ + () —®
1
/@—@—@
©

e General setup:

— Infinite supply
- Nonlocal rules
- Full “graph grammars”

¢ Restricted setup: What is achievable?

— Finite supply
— Local rules: Bond or break
— Reversibility
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Assembly rules

e Complete assembly = Acyclic weighted graph

e Node state: (Position, Vacancies)

e Nodes meet randomly

e If singleton meets vacancy: Active nodes update state
e Singletons break off with probability e
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Simulation observation

Critical case: #Atoms = Integer multiple of final assembly
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Self assembly & stochastic stability

e Fox & JSS (2009): A state is stochastically stable if and only if there is a minimal
number of (sub)assemblies.

e Corollary: Let a complete assembly have N parts. The maximum number of incomplete
assemblies is N — 1. (For any number of atoms.)
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Analysis: Stochastic stability

e Stochastic stability definition:

— Let P° denote the transition probability matrix of an irreducible & aperiodic Markov
chain.

— Let i be the (unique) stationary distribution for P¢
— A state, z, is stochastically stable if

liminf pf(z) > 0

e—0

e Trivial illustration:

(s ye s
n
(s)

e Young (1993): Stochastic stability via resistance trees.
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Language evolution setup

e A “language” L is a pair of matrices (P, Q)

— Binary elements, row sum = 1
— Speaker matrix: P : events — words
— Hearer matrix: ) : words — events

e lllustration:

_ O O™
OO O
O O~
o~ o O
— o o QO

o
1
1
0

QT
2 @ 9

e Optimal language: maximum tr[PQ] or P = QT
e Assume square matrices for convenience

e Population of agents, 7 = {1, ..., (}

e Fitness of agent i with language £; = (]%, Q)

fi =tr[P, ZQ’f | + tr[~ ZPkQ
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Language evolution models & stability

e Update rules:

— Global:
x Select agent ¢ at random
«x Update:
o argmaxy fr, W.p. 1 —€
" ]rand W.p. €
— Local:

x Gonnected undirected graph
* Select edge (7, j) at random
+ Update: Assuming f; > f;

{fz W.pP. 1 —e€

rand Ww.p. e

LT =

J

e Unperturbed (¢ = 0) recurrence class: Consensus

e Fox & JSS (2011): A state is stochastically stable if and only
if it is a uniform optimal language.
Proof: Resistance tree arguments.
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Final remarks

Stability Selection
Descriptive | explanation | refinement
Prescriptive | adaptation | efficiency

e Recap: Dynamics matter!

— Main tools: . *
«+ Stochastic approximation Z AN Py H
+ Stochastic stability ‘”C\ b a::l“»_-:.h:i
— Both prescriptive and descriptive agenda “;_z__‘:_‘x N
e Absent: Convergence rates ﬂ‘:‘:i‘“h—:'.r

(cf., Saberi, Shah & coauthors)
e Future work:

— “Natural” learning rules?
— Fully exploit prescriptive agenda (e.g., chatter)
— Agent states
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