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Networked interaction: Societal, engineered, & hybrid
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Game formulations

• Game elements:

– Actors/players
– Choices
– Preferences over collective choices
– Solution concept (e.g., Nash equilibrium)

• Descriptive agenda:

– Modeling of natural systems
– Game elements inherited
– Modeling metrics

• Prescriptive agenda:

– Distributed optimization for engineered (programmable!) systems
– Game elements designed
– Performance metrics
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Main message

Arrow, 1987: The attainment of equilibrium requires a
disequilibrium process.

Skyrms, 1992: The explanatory significance of the equilibrium
concept depends on the underlying dynamics.
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Background: Game theoretic learning

Arrow: “The attainment of equilibrium requires a disequilibrium process.”

Skyrms: “The explanatory significance of the equilibrium concept
depends on the underlying dynamics.”

• Monographs:

– Weibull, Evolutionary Game Theory, 1997.
– Young, Individual Strategy and Social Structure, 1998.
– Fudenberg & Levine, The Theory of Learning in Games, 1998.
– Samuelson, Evolutionary Games and Equilibrium Selection, 1998.
– Young, Strategic Learning and Its Limits, 2004.
– Sandholm, Population Dynamics and Evolutionary Games, 2010.

• Surveys:

– Hart, “Adaptive heuristics”, Econometrica, 2005.
– Fudenberg & Levine, “Learning and equilibrium”, Annual Review of Economics, 2009.
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Learning among learners

• Single agent adaptation:

– Stationary environment
– Asymptotic guarantees

• Multiagent adaptation:

Environment

=

Other learning agents

⇒

Non-stationary

• A is learning about B, whose behavior depends on
A, whose behavior depends on B...i.e., feedback

• Resulting non-stationarity has major implications
on achievable outcomes.
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Illustration: Fictitious play & stability

• Setup: Repeated play

• Each player:

– Maintains empirical frequencies (histograms) of other player actions
– Forecasts (incorrectly) that others are playing randomly and independently according

to empirical frequencies
– Selects an action that maximizes expected payoff

• Convergence: Zero sum games (1951); 2 × 2 games (1961); Potential games (1996);
2×N games (2003).

• Non-convergence: Shapley fashion game (1964); Jordan anti-coordination game (1993);
Foster & Young merry-go-round game (1998).
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Illustration: RPS & chaos

• Setup: Continuous-time “replicator dynamics” on perturbed RPS

• Sato et al (PNAS 2002): Chaos in learning a simple two-person game
“Many economists have noted the lack of any compelling account of how agents might
learn to play a Nash equilibrium. Our results strongly reinforce this concern, in a game
simple enough for children to play.”
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Illustration: Stochastic adaptive play & selection

A B
A 4,4 0,0
B 0,0 3,3

Typewriter Game

S H
S 3/2,3/2 0,1
H 1,0 1,1

Stag Hunt

• How to distinguish equilibria?

• Payoff based distinctions: Payoff dominance vs Risk dominance

• Evolutionary (i.e., dynamic) distinction

– Young (1993) “The evolution of convention”
– Kandori/Mailath/Rob (1993) “Learning, mutation, and long-run equilibria in games”
– many more...

• Adaptive play:

– “Two” players sparsely sample from finite history
– Players either:
∗ Play best response to selection
∗ Experiment with small probability

– Young (1993): Risk dominance is “stochastically stable”
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Outline

Stability Selection
Descriptive explanation refinement

Prescriptive adaptation efficiency

• Transient phenomena & stability

• Transient phenomena & selection

• Stochastic stability & self-organization

• Network formation, self-assembly, language evolution
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Setup: Basic notions

• Setup:

– Players: {1, ..., p}
– Actions: ai ∈ Ai
– Action profiles:

(a1, a2, ..., ap) ∈ A = A1 ×A2 × ...×Ap

– Payoffs: ui : (a1, a2, ..., ap) = (ai, a−i) 7→ R

• Nash equilibrium: Action profile a∗ ∈ A is a NE if for all players:

ui(a
∗
1, a
∗
2, ..., a

∗
p) = ui(a

∗
i , a
∗
−i) ≥ ui(a

′
i, a
∗
−i)

• Learning dynamics:

– t = 0, 1, 2, ...

– Pr [ai(t)] = pi(t), pi(t) ∈ ∆(Ai)
– pi(t) = Fi(available info at time t)
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Setup: Continuous vs discrete time dynamics

• Stochastic approximation:

x(t + 1) = x(t) +
1

t + 1

(
rand[F (x(t))]

)
=⇒ dx

dt
= F (x)

• Summary: Continuous-time analysis has discrete-time implications

• Illustrations (two player):

– Smooth fictitious play:

fi(t + 1) = fi(t) +
1

t + 1

(
βi(f−i(t))− fi(t)

)
⇓

dfi
dt

= −fi + βi(f−i)

– Reinforcement learning:

pi(t + 1) = pi(t) +
1

t + 1
· ui(a(t)) ·

(
ai(t)− pi(t)

)
⇓

dpi
dt

=
(

diag[Mip−i]− diag[pT
iMip−i]

)
pi

replicator dynamics
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Uncoupled dynamics & nonconvergence

• Uncoupled dynamics:

– The learning rule for each player does not depend (explicitly) on the payoff functions
of the other players.

– Satisfied by fictitious play & replicator dynamics

• Hart & Mas-Colell (2003): There are no uncoupled dynamics that are guaranteed to
converge to Nash equilibrium.
Analysis: Jordan anti-coordination game is universal counterexample.
(cf., Saari & Simon (1978))

• Three players & two actions

– Player 1 6= Player 2
– Player 2 6= Player 3
– Player 3 6= Player 1
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Uncoupled dynamics & convergence?
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Dynamic vs static processing

• Negative results only apply to static learning rules

dpi
dt

(t) = F i(pi(t), p−i(t);Mi)

(applies to fictitious play & replicator dynamics)

• What about dynamic learning rules?

dpi
dt

(t) = F i(pi(·), p−i(·);Mi)

• Marginal forecast dynamics:

– React to myopic predictions
– FP: Best response to forecast empirical frequency
– Replicator dynamics: React to forecast fitness

• Features:

– Purely transient
– Still uncoupled!

q(t+γ) ≈ q(t)+γ
dqest

dt
(t)
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Marginal forecasts

• ATL traffic: “Jam Factor” Holding, Building, Clearing

• Background:

– Basar (1987), “Relaxation techniques and asynchronous algorithms for online computation of noncooperative equilibria”
– Selten (1991), “Anticipatory learning in two-person games”
– Conlisk (1993), “Adaptation in game: Two solutions to the Crawford puzzle”
– Tang (2001), “Anticipatory learning in two-person games: Some experimental results”
– Hess & Modjtahedzadeh (1990), “A control theoretic model of driver steering behavior”
– McRuier (1980), “Human dynamics in man-machine systems”
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Analysis: Marginal forecast fictitious play

dri
dt

= λ(fi − ri)
dfi
dt

= −fi + βi

(
f−i + γ

dr−i
dt

)
• Approximation for λ� 1: ∣∣∣∣dfidt − dri

dt

∣∣∣∣ ≤ 1

λ

∣∣∣∣d2fi
dt2

∣∣∣∣
max

• Note: Auxiliary variables absent from prior impossibility result!

• JSS & Arslan, 2005: For large λ

– FP stable at NE p∗ implies marginal foresight FP stable at q∗ for 0 ≤ γ < 1

– FP unstable at p∗ with eigenvalues xk + jyk and

max
k

xi
x2
k + y2

k

<
γ

1− γ
<

1

maxk xk

implies marginal foresight FP stable at p∗.

• Similar results:

– Marginal foresight replicator dynamics
– Marginal foresight tatonnement
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Transient behavior & equilibrium selection

• Reinforcement learning: xi = action propensities

xi(t + 1) = xi(t) + δ(t)(ai(t)− xi(t)), δ(t) =
ui(a(t))

t + 1

pi(t) = (1− ε)xi(t) +
ε

N
1

δstd(t) =
ui(a(t))

1TUi(t) + ui(a(t))

Interpretation: Increased probability of utilized action.

• Dynamic reinforcement learning: Introduce running average

yi(t + 1) = yi(t) +
1

t + 1
(xi(t)− yi(t))

pi(t) = (1− ε)Π∆

xi(t) + γ(xi(t)− yi(t))︸ ︷︷ ︸
new term

 +
ε

N
1
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Marginal foresight dominance

• Chasparis & JSS (2009): The pure NE a∗ has positive probability of convergence iff

0 < γi <
ui(a

∗
i , a−i)− ui(a′i, a∗−i) + 1

ui(a′i, a
∗
−i)

, ∀a′i 6= a∗i

(as opposed to all pure NE)
Proof: ODE method of stochastic approximation.

• Implication:

– Introduction of “forward looking” agent can destabilize equilibria
– Surviving equilibria = equilibrium selection

• For 2× 2 symmetric coordination games

– RD & not PD⇒ foresight dominance
– RD & PD & Identical interest⇒ foresight dominance
– RD & PD together 6⇒ foresight dominance
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Illustration: Network formation

• Setup:

– Agents form costly links with other agents
– Benefits inherited from connectivity

ui(a(t)) =
(

# of connections to i
)
− κ ·

(
# of links by i

)
• Properties:

– Nash networks are “critically connected”
– Wheel network is unique efficient network
– Chasparis & JSS (2009): The wheel network is foresight dominant.

• Recent work considers transient establishment costs
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Selection & self-assembly

• Atoms form subassemblies.

• Subassemblies form complete assemblies.

• References:

– Yim, Shen, Salemi, Rus, Moll, Lipson, Klavins, & Chirikjian, “Modular self-reconfigurable
robot systems: Challenges and opportunities for the future”, 2007.

– Klavins, “Programmable self-assembly”, 2007.
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Self assembly, cont

• General setup:

– Infinite supply
– Nonlocal rules
– Full “graph grammars”

• Restricted setup: What is achievable?

– Finite supply
– Local rules: Bond or break
– Reversibility
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Assembly rules

• Complete assembly = Acyclic weighted graph

• Node state: (Position, Vacancies)

• Nodes meet randomly

• If singleton meets vacancy: Active nodes update state

• Singletons break off with probability ε
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Simulation observation

Critical case: #Atoms = Integer multiple of final assembly
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Self assembly & stochastic stability

• Fox & JSS (2009): A state is stochastically stable if and only if there is a minimal
number of (sub)assemblies.

• Corollary: Let a complete assembly have N parts. The maximum number of incomplete
assemblies is N − 1. (For any number of atoms.)
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Analysis: Stochastic stability

• Stochastic stability definition:

– Let P ε denote the transition probability matrix of an irreducible & aperiodic Markov
chain.

– Let µε be the (unique) stationary distribution for P ε

– A state, x, is stochastically stable if

lim inf
ε→0

µε(x) > 0

• Trivial illustration:

S1

S2

S3
1-ε

1-ε2

ε2

εε
1-ε

• Young (1993): Stochastic stability via resistance trees.
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Language evolution setup

• A “language” L is a pair of matrices (P,Q)

– Binary elements, row sum = 1
– Speaker matrix: P : events→ words
– Hearer matrix: Q : words→ events

• Illustration:

P =

α β γ

A 1 0 0

B 1 0 0

C 0 1 0

Q =

A B C

α 1 0 0

β 0 1 0

γ 0 0 1

• Optimal language: maximum tr[PQ] or P = QT

• Assume square matrices for convenience

• Population of agents, I = {1, ..., `}

• Fitness of agent i with language Li = (Pi, Qi):

fi = tr[Pi
1

`

∑̀
k=1

Qk] + tr[
1

`

∑̀
k=1

PkQi]
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Language evolution models & stability

• Update rules:

– Global:
∗ Select agent i at random
∗ Update:

L+
i =

{
arg maxk fk w.p. 1− ε
rand w.p. ε

– Local:
∗ Connected undirected graph
∗ Select edge (i, j) at random
∗ Update: Assuming fi ≥ fj

L+
j =

{
fi w.p. 1− ε
rand w.p. ε

• Unperturbed (ε = 0) recurrence class: Consensus

• Fox & JSS (2011): A state is stochastically stable if and only
if it is a uniform optimal language.
Proof: Resistance tree arguments.
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Final remarks

Stability Selection
Descriptive explanation refinement

Prescriptive adaptation efficiency

• Recap: Dynamics matter!

– Main tools:
∗ Stochastic approximation
∗ Stochastic stability

– Both prescriptive and descriptive agenda

• Absent: Convergence rates
(cf., Saberi, Shah & coauthors)

• Future work:

– “Natural” learning rules?
– Fully exploit prescriptive agenda (e.g., chatter)
– Agent states
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